mirror of
https://github.com/rm-dr/daisy
synced 2025-08-24 04:05:29 -07:00
Added Quantity type
This commit is contained in:
7
src/quantity/mod.rs
Normal file
7
src/quantity/mod.rs
Normal file
@ -0,0 +1,7 @@
|
||||
mod rationalq;
|
||||
|
||||
pub mod quantity;
|
||||
pub use crate::quantity::quantity::Quantity;
|
||||
|
||||
const FLOAT_PRECISION: u32 = 2048;
|
||||
const PRINT_LEN: usize = 4; // How many significant digits we will show in output
|
336
src/quantity/quantity.rs
Normal file
336
src/quantity/quantity.rs
Normal file
@ -0,0 +1,336 @@
|
||||
use rug::Float;
|
||||
use rug::ops::Pow;
|
||||
|
||||
use std::ops::{
|
||||
Add, Sub, Mul, Div,
|
||||
Neg, Rem,
|
||||
|
||||
AddAssign, SubAssign,
|
||||
MulAssign, DivAssign
|
||||
};
|
||||
use std::cmp::Ordering;
|
||||
|
||||
|
||||
use crate::quantity::rationalq::RationalQ;
|
||||
use crate::quantity::FLOAT_PRECISION;
|
||||
use crate::quantity::PRINT_LEN;
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(Clone)]
|
||||
pub enum Quantity {
|
||||
Rational{ v: RationalQ },
|
||||
Float{ v: Float }
|
||||
}
|
||||
|
||||
impl ToString for Quantity{
|
||||
fn to_string(&self) -> String {
|
||||
let (sign, mut string, exp) = match self {
|
||||
Quantity::Float { v } => { v.to_sign_string_exp(10, Some(PRINT_LEN)) }
|
||||
Quantity::Rational { v } => { v.to_sign_string_exp(10, Some(PRINT_LEN)) }
|
||||
};
|
||||
|
||||
// zero, nan, or inf.
|
||||
let sign = if sign {"-"} else {""};
|
||||
if exp.is_none() { return format!("{sign}{string}"); }
|
||||
let exp = exp.unwrap();
|
||||
|
||||
// Remove trailing zeros.
|
||||
// At this point, string is guaranteed to be nonzero.
|
||||
while string.chars().last().unwrap() == '0' {
|
||||
string.remove(string.len() - 1);
|
||||
}
|
||||
|
||||
let exp_u: usize;
|
||||
|
||||
if exp < 0 {
|
||||
exp_u = (-exp).try_into().unwrap()
|
||||
} else {
|
||||
exp_u = exp.try_into().unwrap()
|
||||
}
|
||||
|
||||
if exp_u >= 4 {
|
||||
// Exponential notation
|
||||
let pre = &string[0..1];
|
||||
let post = &string[1..];
|
||||
|
||||
format!(
|
||||
"{pre}{}{post}e{}{exp}",
|
||||
if post.len() != 0 {"."} else {""},
|
||||
if exp > 0 {"+"} else {""},
|
||||
)
|
||||
} else {
|
||||
if exp <= 0 { // Decimal, needs `0.` and leading zeros
|
||||
format!(
|
||||
"0.{}{string}",
|
||||
"0".repeat(exp_u)
|
||||
)
|
||||
} else if exp_u < string.len() { // Decimal, needs only `.`
|
||||
format!(
|
||||
"{}.{}",
|
||||
&string[0..exp_u],
|
||||
&string[exp_u..]
|
||||
)
|
||||
} else { // Integer, needs trailing zeros
|
||||
format!(
|
||||
"{string}{}",
|
||||
"0".repeat(exp_u - string.len())
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
macro_rules! quick_quant_fn {
|
||||
( $x:ident ) => {
|
||||
pub fn $x(&self) -> Quantity {
|
||||
match self {
|
||||
Quantity::Float { v } => {Quantity::Float{ v:v.clone().$x()}},
|
||||
Quantity::Rational { v } => {v.$x()}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Quantity {
|
||||
|
||||
pub fn new_float(f: f64) -> Quantity {
|
||||
return Quantity::Float {
|
||||
v: Float::with_val(FLOAT_PRECISION, f)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn float_from_string(s: &str) -> Quantity {
|
||||
let v = Float::parse(s);
|
||||
return Quantity::Float {
|
||||
v: Float::with_val(FLOAT_PRECISION, v.unwrap())
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
pub fn new_rational(top: i64, bottom: i64) -> Quantity {
|
||||
return Quantity::Rational {
|
||||
v: RationalQ::new(top, bottom)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new_rational_from_f64(f: f64) ->
|
||||
Option<Quantity> {
|
||||
let r = RationalQ::from_f64(f);
|
||||
|
||||
if r.is_some() {
|
||||
return Some(Quantity::Rational {
|
||||
v: r.unwrap()
|
||||
});
|
||||
} else {
|
||||
return None;
|
||||
}
|
||||
}
|
||||
|
||||
pub fn to_float(&self) -> Float {
|
||||
match self {
|
||||
Quantity::Float { v } => {v.clone()},
|
||||
Quantity::Rational { v } => {v.to_float()}
|
||||
}
|
||||
}
|
||||
|
||||
quick_quant_fn!(fract);
|
||||
|
||||
quick_quant_fn!(abs);
|
||||
quick_quant_fn!(floor);
|
||||
quick_quant_fn!(ceil);
|
||||
quick_quant_fn!(round);
|
||||
quick_quant_fn!(sin);
|
||||
quick_quant_fn!(cos);
|
||||
quick_quant_fn!(tan);
|
||||
quick_quant_fn!(asin);
|
||||
quick_quant_fn!(acos);
|
||||
quick_quant_fn!(atan);
|
||||
quick_quant_fn!(sinh);
|
||||
quick_quant_fn!(cosh);
|
||||
quick_quant_fn!(tanh);
|
||||
quick_quant_fn!(asinh);
|
||||
quick_quant_fn!(acosh);
|
||||
quick_quant_fn!(atanh);
|
||||
|
||||
quick_quant_fn!(ln);
|
||||
quick_quant_fn!(log10);
|
||||
quick_quant_fn!(log2);
|
||||
|
||||
pub fn log(&self, base: Quantity) -> Quantity {
|
||||
match (&self, &base) {
|
||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{v: a.clone().log10() / b.clone().log10()}},
|
||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {Quantity::Float{v: a.clone().log10() / b.to_float().log10()}},
|
||||
(Quantity::Rational{v:a}, _) => {a.log(base)}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_zero(&self) -> bool {
|
||||
match self {
|
||||
Quantity::Float { v } => {v.is_zero()},
|
||||
Quantity::Rational { v } => {v.is_zero()}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn pow(&self, exp: Quantity) -> Quantity {
|
||||
match self {
|
||||
Quantity::Float { v } => {Quantity::Float {v: v.pow(exp.to_float())}},
|
||||
Quantity::Rational { v } => {v.pow(exp) }
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_nan(&self) -> bool {
|
||||
match self {
|
||||
Quantity::Float { v } => {v.is_nan()},
|
||||
Quantity::Rational { .. } => {panic!()}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Neg for Quantity where {
|
||||
type Output = Self;
|
||||
|
||||
fn neg(self) -> Self::Output {
|
||||
match self {
|
||||
Quantity::Float { v } => {Quantity::Float{ v: -v }},
|
||||
Quantity::Rational { v } => {Quantity::Rational { v: -v }},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for Quantity {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, other: Self) -> Self::Output {
|
||||
match (self, other) {
|
||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a+b }},
|
||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {Quantity::Float{ v: a+b.to_float() }},
|
||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.to_float()+b }},
|
||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational{ v: a+b }},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign for Quantity where {
|
||||
fn add_assign(&mut self, other: Self) {
|
||||
match (&mut *self, other) {
|
||||
(Quantity::Float{v: a}, Quantity::Float{v: ref b}) => {*a += b},
|
||||
(Quantity::Float{v: a}, Quantity::Rational{v:b}) => {*a += b.to_float()},
|
||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {*self = Quantity::Float{ v: a.to_float()+b }},
|
||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {*a += b},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for Quantity {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, other: Self) -> Self::Output {
|
||||
match (self, other) {
|
||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a-b }},
|
||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {Quantity::Float{ v: a-b.to_float() }},
|
||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.to_float()-b }},
|
||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational{ v: a-b }},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign for Quantity where {
|
||||
fn sub_assign(&mut self, other: Self) {
|
||||
match (&mut *self, other) {
|
||||
(Quantity::Float{v: a}, Quantity::Float{v: ref b}) => {*a -= b},
|
||||
(Quantity::Float{v: a}, Quantity::Rational{v:b}) => {*a -= b.to_float()},
|
||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {*self = Quantity::Float{ v: a.to_float()-b }},
|
||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {*a -= b},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for Quantity {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, other: Self) -> Self::Output {
|
||||
match (self, other) {
|
||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a*b }},
|
||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {Quantity::Float{ v: a*b.to_float() }},
|
||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.to_float()*b }},
|
||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational{ v: a*b }},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign for Quantity where {
|
||||
fn mul_assign(&mut self, other: Self) {
|
||||
match (&mut *self, other) {
|
||||
(Quantity::Float{v: a}, Quantity::Float{v: ref b}) => {*a *= b},
|
||||
(Quantity::Float{v: a}, Quantity::Rational{v:b}) => {*a *= b.to_float()},
|
||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {*self = Quantity::Float{ v: a.to_float() * b }},
|
||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {*a *= b},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
impl Div for Quantity {
|
||||
type Output = Self;
|
||||
|
||||
fn div(self, other: Self) -> Self::Output {
|
||||
match (self, other) {
|
||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a/b }},
|
||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {Quantity::Float{ v: a/b.to_float() }},
|
||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.to_float()/b }},
|
||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational{ v: a/b }},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl DivAssign for Quantity where {
|
||||
fn div_assign(&mut self, other: Self) {
|
||||
match (&mut *self, other) {
|
||||
(Quantity::Float{v: a}, Quantity::Float{v: ref b}) => {*a /= b},
|
||||
(Quantity::Float{v: a}, Quantity::Rational{v:b}) => {*a /= b.to_float()},
|
||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {*self = Quantity::Float{ v: a.to_float()/b }},
|
||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {*a /= b},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Rem<Quantity> for Quantity {
|
||||
type Output = Self;
|
||||
|
||||
fn rem(self, modulus: Quantity) -> Self::Output {
|
||||
match (self, modulus) {
|
||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a%b }},
|
||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {Quantity::Float{ v: a%b.to_float() }},
|
||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {Quantity::Float{ v: a.to_float()%b }},
|
||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {Quantity::Rational { v: a%b }},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for Quantity {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
match (self, other) {
|
||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {a == b},
|
||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {*a==b.to_float()},
|
||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {a.to_float()==*b},
|
||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {a == b},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for Quantity {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
match (self, other) {
|
||||
(Quantity::Float{v:a}, Quantity::Float{v:b}) => {a.partial_cmp(b)},
|
||||
(Quantity::Float{v:a}, Quantity::Rational{v:b}) => {(*a).partial_cmp(&b.to_float())},
|
||||
(Quantity::Rational{v:a}, Quantity::Float{v:b}) => {a.to_float().partial_cmp(b)},
|
||||
(Quantity::Rational{v:a}, Quantity::Rational{v:b}) => {a.partial_cmp(b)},
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
216
src/quantity/rationalq.rs
Normal file
216
src/quantity/rationalq.rs
Normal file
@ -0,0 +1,216 @@
|
||||
use rug::Float;
|
||||
use rug::ops::Pow;
|
||||
use rug::Rational;
|
||||
use rug::Integer;
|
||||
|
||||
use std::ops::{
|
||||
Add, Sub, Mul, Div,
|
||||
Neg, Rem,
|
||||
|
||||
AddAssign, SubAssign,
|
||||
MulAssign, DivAssign
|
||||
};
|
||||
|
||||
use std::cmp::Ordering;
|
||||
|
||||
|
||||
use crate::quantity::Quantity;
|
||||
use crate::quantity::FLOAT_PRECISION;
|
||||
|
||||
macro_rules! rational {
|
||||
( $x:expr ) => {
|
||||
Quantity::Rational { v: RationalQ {
|
||||
val : $x
|
||||
}}
|
||||
};
|
||||
}
|
||||
|
||||
macro_rules! float {
|
||||
( $x:expr ) => {
|
||||
Quantity::Float { v: $x }
|
||||
};
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
#[derive(Clone)]
|
||||
pub struct RationalQ where {
|
||||
pub val: Rational
|
||||
}
|
||||
|
||||
impl ToString for RationalQ {
|
||||
fn to_string(&self) -> String {
|
||||
self.to_float().to_string()
|
||||
}
|
||||
}
|
||||
|
||||
impl RationalQ {
|
||||
pub fn new(top: i64, bot: i64) -> RationalQ {
|
||||
return RationalQ {
|
||||
val: Rational::from((top, bot))
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_zero(&self) -> bool{
|
||||
return self.val == Rational::from((0,1));
|
||||
}
|
||||
pub fn fract(&self) -> Quantity {
|
||||
rational!(self.val.clone().fract_floor(Integer::new()).0)
|
||||
}
|
||||
|
||||
pub fn from_f64(f: f64) -> Option<RationalQ> {
|
||||
let v = Rational::from_f64(f);
|
||||
if v.is_none() { return None }
|
||||
return Some(RationalQ{ val: v.unwrap() });
|
||||
}
|
||||
|
||||
pub fn to_float(&self) -> Float {
|
||||
Float::with_val(FLOAT_PRECISION, self.val.numer()) /
|
||||
Float::with_val(FLOAT_PRECISION, self.val.denom())
|
||||
}
|
||||
|
||||
pub fn to_string_radix(&self, radix: i32, num_digits: Option<usize>) -> String {
|
||||
self.to_float().to_string_radix(radix, num_digits)
|
||||
}
|
||||
|
||||
pub fn to_sign_string_exp(&self, radix: i32, num_digits: Option<usize>) -> (bool, String, Option<i32>) {
|
||||
self.to_float().to_sign_string_exp(radix, num_digits)
|
||||
}
|
||||
|
||||
|
||||
pub fn abs(&self) -> Quantity {rational!(self.val.clone().abs())}
|
||||
pub fn floor(&self) -> Quantity {rational!(self.val.clone().floor())}
|
||||
pub fn ceil(&self) -> Quantity {rational!(self.val.clone().ceil())}
|
||||
pub fn round(&self) -> Quantity {rational!(self.val.clone().round())}
|
||||
|
||||
pub fn sin(&self) -> Quantity {float!(self.to_float().sin())}
|
||||
pub fn cos(&self) -> Quantity {float!(self.to_float().cos())}
|
||||
pub fn tan(&self) -> Quantity {float!(self.to_float().tan())}
|
||||
pub fn asin(&self) -> Quantity {float!(self.to_float().asin())}
|
||||
pub fn acos(&self) -> Quantity {float!(self.to_float().acos())}
|
||||
pub fn atan(&self) -> Quantity {float!(self.to_float().atan())}
|
||||
|
||||
pub fn sinh(&self) -> Quantity {float!(self.to_float().sinh())}
|
||||
pub fn cosh(&self) -> Quantity {float!(self.to_float().cosh())}
|
||||
pub fn tanh(&self) -> Quantity {float!(self.to_float().tanh())}
|
||||
pub fn asinh(&self) -> Quantity {float!(self.to_float().asinh())}
|
||||
pub fn acosh(&self) -> Quantity {float!(self.to_float().acosh())}
|
||||
pub fn atanh(&self) -> Quantity {float!(self.to_float().atanh())}
|
||||
|
||||
pub fn ln(&self) -> Quantity {float!(self.to_float().ln())}
|
||||
pub fn log10(&self) -> Quantity {float!(self.to_float().log10())}
|
||||
pub fn log2(&self) -> Quantity {float!(self.to_float().log2())}
|
||||
|
||||
pub fn log(&self, base: Quantity) -> Quantity {
|
||||
float!(self.to_float().log10() / base.to_float().log10())
|
||||
}
|
||||
|
||||
|
||||
|
||||
pub fn pow(&self, exp: Quantity) -> Quantity {
|
||||
float!(self.to_float().pow(exp.to_float()))
|
||||
}
|
||||
}
|
||||
|
||||
impl Add for RationalQ where {
|
||||
type Output = Self;
|
||||
|
||||
fn add(self, other: Self) -> Self::Output {
|
||||
Self {
|
||||
val: self.val + other.val
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl AddAssign for RationalQ where {
|
||||
fn add_assign(&mut self, other: Self) {
|
||||
self.val += other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Sub for RationalQ {
|
||||
type Output = Self;
|
||||
|
||||
fn sub(self, other: Self) -> Self::Output {
|
||||
Self {
|
||||
val: self.val - other.val
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl SubAssign for RationalQ where {
|
||||
fn sub_assign(&mut self, other: Self) {
|
||||
self.val -= other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Mul for RationalQ {
|
||||
type Output = Self;
|
||||
|
||||
fn mul(self, other: Self) -> Self::Output {
|
||||
Self {
|
||||
val: self.val * other.val
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl MulAssign for RationalQ where {
|
||||
fn mul_assign(&mut self, other: Self) {
|
||||
self.val *= other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Div for RationalQ {
|
||||
type Output = Self;
|
||||
|
||||
fn div(self, other: Self) -> Self::Output {
|
||||
Self {
|
||||
val: self.val / other.val
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl DivAssign for RationalQ where {
|
||||
fn div_assign(&mut self, other: Self) {
|
||||
self.val /= other.val;
|
||||
}
|
||||
}
|
||||
|
||||
impl Neg for RationalQ where {
|
||||
type Output = Self;
|
||||
|
||||
fn neg(self) -> Self::Output {
|
||||
Self {
|
||||
val: -self.val
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Rem<RationalQ> for RationalQ {
|
||||
type Output = Self;
|
||||
|
||||
fn rem(self, modulus: RationalQ) -> Self::Output {
|
||||
if {
|
||||
*self.val.denom() != 1 ||
|
||||
*modulus.val.denom() != 1
|
||||
} { panic!() }
|
||||
|
||||
RationalQ{
|
||||
val : Rational::from((
|
||||
self.val.numer() % modulus.val.numer(),
|
||||
1
|
||||
))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialEq for RationalQ {
|
||||
fn eq(&self, other: &Self) -> bool {
|
||||
self.val == other.val
|
||||
}
|
||||
}
|
||||
|
||||
impl PartialOrd for RationalQ {
|
||||
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
|
||||
self.val.partial_cmp(&other.val)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user