mirror of https://github.com/rm-dr/daisy
Replaced RUG rational with num rational
parent
3a08cfb2d3
commit
11b5cd877a
|
@ -1,5 +1,7 @@
|
||||||
use rug::Rational;
|
use num::rational::BigRational;
|
||||||
use rug::Integer;
|
use num::BigInt;
|
||||||
|
use num::Num;
|
||||||
|
use num::Signed;
|
||||||
|
|
||||||
use std::ops::{
|
use std::ops::{
|
||||||
Add, Sub, Mul, Div,
|
Add, Sub, Mul, Div,
|
||||||
|
@ -22,7 +24,7 @@ macro_rules! cant_do {
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
#[derive(Clone)]
|
#[derive(Clone)]
|
||||||
pub struct RationalBase where {
|
pub struct RationalBase where {
|
||||||
pub val: Rational
|
pub val: BigRational
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ToString for RationalBase{
|
impl ToString for RationalBase{
|
||||||
|
@ -33,18 +35,12 @@ impl ToString for RationalBase{
|
||||||
|
|
||||||
impl RationalBase {
|
impl RationalBase {
|
||||||
pub fn from_frac(t: i64, b: i64) -> Option<RationalBase> {
|
pub fn from_frac(t: i64, b: i64) -> Option<RationalBase> {
|
||||||
let v = Rational::from((t, b));
|
let v = BigRational::new_raw(BigInt::from(t), BigInt::from(b));
|
||||||
return Some(RationalBase{ val: v });
|
return Some(RationalBase{ val: v });
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
impl ScalarBase for RationalBase {
|
impl ScalarBase for RationalBase {
|
||||||
fn from_f64(f: f64) -> Option<RationalBase> {
|
|
||||||
let v = Rational::from_f64(f);
|
|
||||||
if v.is_none() { return None }
|
|
||||||
return Some(RationalBase{ val: v.unwrap() });
|
|
||||||
}
|
|
||||||
|
|
||||||
fn from_string(s: &str) -> Option<RationalBase> {
|
fn from_string(s: &str) -> Option<RationalBase> {
|
||||||
// Scientific notation
|
// Scientific notation
|
||||||
let mut sci = s.split("e");
|
let mut sci = s.split("e");
|
||||||
|
@ -89,7 +85,7 @@ impl ScalarBase for RationalBase {
|
||||||
|
|
||||||
|
|
||||||
// From fraction string
|
// From fraction string
|
||||||
let r = Rational::from_str_radix(&s, 10);
|
let r = BigRational::from_str_radix(&s, 10);
|
||||||
let r = match r {
|
let r = match r {
|
||||||
Ok(x) => x,
|
Ok(x) => x,
|
||||||
Err(_) => return None
|
Err(_) => return None
|
||||||
|
@ -100,18 +96,13 @@ impl ScalarBase for RationalBase {
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
fn fract(&self) -> Option<RationalBase> {
|
fn fract(&self) -> Option<RationalBase> { Some(RationalBase{val: self.val.fract()}) }
|
||||||
Some(RationalBase{val: self.val.clone().fract_floor(Integer::new()).0})
|
fn is_int(&self) -> bool { self.val.is_integer() }
|
||||||
}
|
|
||||||
|
|
||||||
fn is_int(&self) -> bool {
|
fn is_zero(&self) -> bool {self.val == BigRational::from_integer(BigInt::from(0))}
|
||||||
self.fract() == RationalBase::from_f64(0f64)
|
fn is_one(&self) -> bool {self.val == BigRational::from_integer(BigInt::from(1))}
|
||||||
}
|
fn is_negative(&self) -> bool { self.val.is_negative() }
|
||||||
|
fn is_positive(&self) -> bool { self.val.is_positive() }
|
||||||
fn is_zero(&self) -> bool {self.val == Rational::from((0,1))}
|
|
||||||
fn is_one(&self) -> bool {self.val == Rational::from((1,1))}
|
|
||||||
fn is_negative(&self) -> bool { self.val.clone().signum() == -1 }
|
|
||||||
fn is_positive(&self) -> bool { self.val.clone().signum() == 1 }
|
|
||||||
|
|
||||||
fn abs(&self) -> Option<RationalBase> {Some(RationalBase{val: self.val.clone().abs()})}
|
fn abs(&self) -> Option<RationalBase> {Some(RationalBase{val: self.val.clone().abs()})}
|
||||||
fn floor(&self) -> Option<RationalBase> {Some(RationalBase{val: self.val.clone().floor()})}
|
fn floor(&self) -> Option<RationalBase> {Some(RationalBase{val: self.val.clone().floor()})}
|
||||||
|
@ -153,9 +144,7 @@ impl Add for RationalBase where {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
|
|
||||||
fn add(self, other: Self) -> Self::Output {
|
fn add(self, other: Self) -> Self::Output {
|
||||||
Self {
|
Self { val: self.val + other.val }
|
||||||
val: self.val + other.val
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -169,9 +158,7 @@ impl Sub for RationalBase {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
|
|
||||||
fn sub(self, other: Self) -> Self::Output {
|
fn sub(self, other: Self) -> Self::Output {
|
||||||
Self {
|
Self { val: self.val - other.val }
|
||||||
val: self.val - other.val
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -185,9 +172,7 @@ impl Mul for RationalBase {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
|
|
||||||
fn mul(self, other: Self) -> Self::Output {
|
fn mul(self, other: Self) -> Self::Output {
|
||||||
Self {
|
Self { val: self.val * other.val }
|
||||||
val: self.val * other.val
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -201,9 +186,7 @@ impl Div for RationalBase {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
|
|
||||||
fn div(self, other: Self) -> Self::Output {
|
fn div(self, other: Self) -> Self::Output {
|
||||||
Self {
|
Self { val: self.val / other.val }
|
||||||
val: self.val / other.val
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -217,9 +200,7 @@ impl Neg for RationalBase where {
|
||||||
type Output = Self;
|
type Output = Self;
|
||||||
|
|
||||||
fn neg(self) -> Self::Output {
|
fn neg(self) -> Self::Output {
|
||||||
Self {
|
Self { val: -self.val }
|
||||||
val: -self.val
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -228,15 +209,15 @@ impl Rem<RationalBase> for RationalBase {
|
||||||
|
|
||||||
fn rem(self, modulus: RationalBase) -> Self::Output {
|
fn rem(self, modulus: RationalBase) -> Self::Output {
|
||||||
if {
|
if {
|
||||||
*self.val.denom() != 1 ||
|
*self.val.denom() != BigInt::from(1) ||
|
||||||
*modulus.val.denom() != 1
|
*modulus.val.denom() != BigInt::from(1)
|
||||||
} { panic!() }
|
} { panic!() }
|
||||||
|
|
||||||
RationalBase{
|
RationalBase{
|
||||||
val : Rational::from((
|
val : BigRational::new_raw(
|
||||||
self.val.numer() % modulus.val.numer(),
|
self.val.numer() % modulus.val.numer(),
|
||||||
1
|
BigInt::from(1)
|
||||||
))
|
)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue