Mark
/
celeste-ai
Archived
1
0
Fork 0
This repository has been archived on 2023-11-28. You can view files and clone it, but cannot push or open issues/pull-requests.
celeste-ai/celeste/main.py

486 lines
11 KiB
Python

from collections import namedtuple
from collections import deque
from pathlib import Path
import random
import math
import json
import torch
from celeste import Celeste
if __name__ == "__main__":
# Where to read/write model data.
model_data_root = Path("model_data")
model_save_path = model_data_root / "model.torch"
model_archive_dir = model_data_root / "model_archive"
model_train_log = model_data_root / "train_log"
screenshot_dir = model_data_root / "screenshots"
model_data_root.mkdir(parents = True, exist_ok = True)
model_archive_dir.mkdir(parents = True, exist_ok = True)
screenshot_dir.mkdir(parents = True, exist_ok = True)
compute_device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu"
)
# Celeste env properties
n_observations = len(Celeste.state_number_map)
n_actions = len(Celeste.action_space)
# Epsilon-greedy parameters
#
# Original docs:
# EPS_START is the starting value of epsilon
# EPS_END is the final value of epsilon
# EPS_DECAY controls the rate of exponential decay of epsilon, higher means a slower decay
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 1000
BATCH_SIZE = 1_000
# Learning rate of target_net.
# Controls how soft our soft update is.
#
# Should be between 0 and 1.
# Large values
# Small values do the opposite.
#
# A value of one makes target_net
# change at the same rate as policy_net.
#
# A value of zero makes target_net
# not change at all.
TAU = 0.005
# GAMMA is the discount factor as mentioned in the previous section
GAMMA = 0.99
# Outline our network
class DQN(torch.nn.Module):
def __init__(self, n_observations: int, n_actions: int):
super(DQN, self).__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(n_observations, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 128),
torch.nn.ReLU(),
torch.nn.Linear(128, 128),
torch.nn.ReLU(),
torch.torch.nn.Linear(128, n_actions)
)
# Can be called with one input, or with a batch.
#
# Returns tensor(
# [ Q(s, left), Q(s, right) ], ...
# )
#
# Recall that Q(s, a) is the (expected) return of taking
# action `a` at state `s`
def forward(self, x):
return self.layers(x)
Transition = namedtuple(
"Transition",
(
"state",
"action",
"next_state",
"reward"
)
)
if __name__ == "__main__":
steps_done = 0
num_episodes = 100
episode_number = 0
archive_interval = 10
# Create replay memory.
#
# Transition: a container for naming data (defined in util.py)
# Memory: a deque that holds recent states as Transitions
# Has a fixed length, drops oldest
# element if maxlen is exceeded.
memory = deque([], maxlen=100_000)
policy_net = DQN(
n_observations,
n_actions
).to(compute_device)
target_net = DQN(
n_observations,
n_actions
).to(compute_device)
target_net.load_state_dict(policy_net.state_dict())
optimizer = torch.optim.AdamW(
policy_net.parameters(),
lr = 0.01, # Hyperparameter: learning rate
amsgrad = True
)
if model_save_path.is_file():
# Load model if one exists
checkpoint = torch.load(model_save_path)
policy_net.load_state_dict(checkpoint["policy_state_dict"])
target_net.load_state_dict(checkpoint["target_state_dict"])
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
memory = checkpoint["memory"]
episode_number = checkpoint["episode_number"] + 1
steps_done = checkpoint["steps_done"]
def select_action(state, steps_done):
"""
Select an action using an epsilon-greedy policy.
Sometimes use our model, sometimes sample one uniformly.
P(random action) starts at EPS_START and decays to EPS_END.
Decay rate is controlled by EPS_DECAY.
"""
# Random number 0 <= x < 1
sample = random.random()
# Calculate random step threshhold
eps_threshold = (
EPS_END + (EPS_START - EPS_END) *
math.exp(
-1.0 * steps_done /
EPS_DECAY
)
)
if sample > eps_threshold:
with torch.no_grad():
# t.max(1) will return the largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
return policy_net(state).max(1)[1].view(1, 1).item()
else:
return random.randint( 0, n_actions-1 )
def optimize_model():
if len(memory) < BATCH_SIZE:
raise Exception(f"Not enough elements in memory for a batch of {BATCH_SIZE}")
# Get a random sample of transitions
batch = random.sample(memory, BATCH_SIZE)
# Conversion.
# Transposes batch, turning an array of Transitions
# into a Transition of arrays.
batch = Transition(*zip(*batch))
# Conversion.
# Combine states, actions, and rewards into their own tensors.
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
# Compute a mask of non_final_states.
# Each element of this tensor corresponds to an element in the batch.
# True if this is a final state, False if it is.
#
# We use this to select non-final states later.
non_final_mask = torch.tensor(
tuple(map(
lambda s: s is not None,
batch.next_state
))
)
non_final_next_states = torch.cat(
[s for s in batch.next_state if s is not None]
)
# How .gather works:
# if out = a.gather(1, b),
# out[i, j] = a[ i ][ b[i,j] ]
#
# a is "input," b is "index"
# If this doesn't make sense, RTFD.
# Compute Q(s_t, a).
# - Use policy_net to compute Q(s_t) for each state in the batch.
# This gives a tensor of [ Q(state, left), Q(state, right) ]
#
# - Action batch is a tensor that looks like [ [0], [1], [1], ... ]
# listing the action that was taken in each transition.
# 0 => we went left, 1 => we went right.
#
# This aligns nicely with the output of policy_net. We use
# action_batch to index the output of policy_net's prediction.
#
# This gives us a tensor that contains the return we expect to get
# at that state if we follow the model's advice.
state_action_values = policy_net(state_batch).gather(1, action_batch)
# Compute V(s_t+1) for all next states.
# V(s_t+1) = max_a ( Q(s_t+1, a) )
# = the maximum reward over all possible actions at state s_t+1.
next_state_values = torch.zeros(BATCH_SIZE, device = compute_device)
# Don't compute gradient for operations in this block.
# If you don't understand what this means, RTFD.
with torch.no_grad():
# Note the use of non_final_mask here.
# States that are final do not have their reward set by the line
# below, so their reward stays at zero.
#
# States that are not final get their predicted value
# set to the best value the model predicts.
#
#
# Expected values of action are selected with the "older" target net,
# and their best reward (over possible actions) is selected with max(1)[0].
next_state_values[non_final_mask] = target_net(non_final_next_states).max(1)[0]
# TODO: What does this mean?
# "Compute expected Q values"
expected_state_action_values = reward_batch + (next_state_values * GAMMA)
# Compute Huber loss between predicted reward and expected reward.
# Pytorch is will account for this when we compute the gradient of loss.
#
# loss is a single-element tensor (i.e, a scalar).
criterion = torch.nn.SmoothL1Loss()
loss = criterion(
state_action_values,
expected_state_action_values.unsqueeze(1)
)
# We can now run a step of backpropagation on our model.
# TODO: what does this do?
#
# Calling .backward() multiple times will accumulate parameter gradients.
# Thus, we reset the gradient before each step.
optimizer.zero_grad()
# Compute the gradient of loss wrt... something?
# TODO: what does this do, we never use loss again?!
loss.backward()
# Prevent vanishing and exploding gradients.
# Forces gradients to be in [-clip_value, +clip_value]
torch.nn.utils.clip_grad_value_( # type: ignore
policy_net.parameters(),
clip_value = 100
)
# Perform a single optimizer step.
#
# Uses the current gradient, which is stored
# in the .grad attribute of the parameter.
optimizer.step()
def on_state_before(celeste):
global steps_done
# Conversion to pytorch
state = celeste.state
pt_state = torch.tensor(
[getattr(state, x) for x in Celeste.state_number_map],
dtype = torch.float32,
device = compute_device
).unsqueeze(0)
action = None
while (action) is None or ((not state.can_dash) and (str_action not in ["left", "right"])):
action = select_action(
pt_state,
steps_done
)
str_action = Celeste.action_space[action]
steps_done += 1
# For manual testing
#str_action = ""
#while str_action not in Celeste.action_space:
# str_action = input("action> ")
#action = Celeste.action_space.index(str_action)
print(str_action)
celeste.act(str_action)
return state, action
def on_state_after(celeste, before_out):
global episode_number
global image_count
state, action = before_out
next_state = celeste.state
pt_state = torch.tensor(
[getattr(state, x) for x in Celeste.state_number_map],
dtype = torch.float32,
device = compute_device
).unsqueeze(0)
pt_action = torch.tensor(
[[ action ]],
device = compute_device,
dtype = torch.long
)
if next_state.deaths != 0:
pt_next_state = None
reward = 0
else:
pt_next_state = torch.tensor(
[getattr(next_state, x) for x in Celeste.state_number_map],
dtype = torch.float32,
device = compute_device
).unsqueeze(0)
if state.next_point == next_state.next_point:
reward = state.dist - next_state.dist
# Clip rewards that are too large
if reward > 1:
reward = 1
else:
reward = 0
else:
# Score for reaching a point
reward = 1
pt_reward = torch.tensor([reward], device = compute_device)
# Add this state transition to memory.
memory.append(
Transition(
pt_state, # last state
pt_action,
pt_next_state, # next state
pt_reward
)
)
print("==> ", int(reward))
print("\n")
# Only train the network if we have enough
# transitions in memory to do so.
if len(memory) >= BATCH_SIZE:
optimize_model()
# Soft update target_net weights
target_net_state = target_net.state_dict()
policy_net_state = policy_net.state_dict()
for key in policy_net_state:
target_net_state[key] = (
policy_net_state[key] * TAU +
target_net_state[key] * (1-TAU)
)
target_net.load_state_dict(target_net_state)
# Move on to the next episode once we reach
# a terminal state.
if (next_state.deaths != 0):
s = celeste.state
with model_train_log.open("a") as f:
f.write(json.dumps({
"checkpoints": s.next_point,
"state_count": s.state_count
}) + "\n")
# Save model
torch.save({
"policy_state_dict": policy_net.state_dict(),
"target_state_dict": target_net.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"memory": memory,
"episode_number": episode_number,
"steps_done": steps_done
}, model_save_path)
# Clean up screenshots
shots = Path("/home/mark/Desktop").glob("hackcel_*.png")
target = screenshot_dir / Path(f"{episode_number}")
target.mkdir(parents = True)
for s in shots:
s.rename(target / s.name)
# Save a prediction graph
if episode_number % archive_interval == 0:
torch.save({
"policy_state_dict": policy_net.state_dict(),
"target_state_dict": target_net.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"memory": memory,
"episode_number": episode_number,
"steps_done": steps_done
}, model_archive_dir / f"{episode_number}.torch")
print("Game over. Resetting.")
episode_number += 1
celeste.reset()
if __name__ == "__main__":
c = Celeste()
c.update_loop(
on_state_before,
on_state_after
)