
Celeste--AI
Mark Ponomarenko1, Timothy Chang, Ricardo Parada, Kelly Chang.

Part 1: Abstract

From Super Mario Bros [4] and Atari [7] to Go [10] and even Starcraft [9], various forms of machine learning
have been used to create game-playing algorithms. A common technique used for this task is reinforcement
learning, especially deep Q-Learning. In this paper, we present a novel attempt to use these reinforcement-
learning techniques to solve the first stage of Celeste Classic [3].

Part 2: Background

Our work is heavily based off the research done by Minh et. al in Human-Level Control through Deep Rein-
forcement Learning [6]. The algorithm we developed to solve Celeste Classic uses a deep Q-learning algorithm
supported by replay memory, with a modified reward system and explore-exploit probability. This is very sim-
ilar to the architecture presented by Minh et al.

The greatest difference between our approach and the approach of Human-Level Control is the input space and
neural network type. Minh et. al use a convolutional neural network, which takes the game screen as input.
This requires a significant amount of training epochs and computation time, and was thus an unreasonable
approach for us. We instead used a plain linear neural network with two inputs: player x and player y.

Another project similar to ours is AiSpawn's AI Learns to Speedrun Celeste [1]. Here, AiSpawn completes the
same task we do---solving Celeste Classic---but he uses a completely different, evolution-based approach.

1Wrote this paper.



Part 3: Introduction

Celeste [2] is a fairly successful 2018 platformer, known for high-quality level design, a vibrant speedrunning2

community, and brutally difficult progression. It is based on Celeste Classic, a 4-day game jam project by the
same authors. There are a few reasons we chose to create an agent for Celeste Classic:

1: Celeste Classic is designed for humans, unlike the
environments from, for example, the gymnasium [5]
library.
2: It runs on the PICO-8 [8], which allows us to modify
its code. This grants us a reliable way to interface with
the game interface. This is not true of Celeste (2018) ---
writing a wrapper for Celeste would take a significant
amout of time.
3: The action space of Celeste Classic is small, espe-
cially when ineffective actions are pruned. The first stage of Celeste (2018), showing

the player dashing to the upper-right.

When we started this project, our goal was to develop an agent that would learn to finish the first stage of this
game. It starts in the bottom-left corner of the stage, and needs to reach the top right. If the agent touches the
spikes at the bottom of the stage, the game is reset and the agent must try again.
To achieve this end, our agent selects one of nine actions (listed below) at every time step. It does this using a
Q-learning algorithm, which is described in detail later in this paper.

Possible actions:
− left: move left
− right: move right
− jump-l: jump left
− jump-r: jump right
− dash-l: dash left
− dash-r: dash right
− dash-u: dash up
− dash-ru: dash right-up
− dash-lu: dash left-up The first stage of Celeste Classic. Two possible

actions our agent can take are shown: jump-r
followed by dash-lu.

This task has no direct practical applications. However, by developing an agent that completes this task, we
will explore possible techniques and modifications to the traditional DQN algorithm, and we will learn how a
simple machine learning model can be adjusted for a rather complicated task.

2speedrunning: a competition where participants try to complete a game as quickly as possible, often abusing bugs and design mistakes.

2



Part 4: Methods

Our solution to Celeste Classic consists of two major parts: the interface and the agent. The first provides a
high-level interface for the game, and the second uses deep Q-learning techniques to control the player.

4.1 Interface

The interface component does not have any machine-learning logic. Its primary job is to send input and receive
game state from Celeste Classic. We send input by emulating keypresses with the standard X11 utility xtodool.
A minor consequence of this is the fact that our agent may only be run in a linux environment, but this can be
remedied with a bit of extra code.

We receive game state by abusing the PICO-8's debugging features. Since PICO-8 games are plain text files, we
were able to modify the code of Celeste Classic with a few well-placed debug-print statements. The interface
captures this text, parses it, and feeds it to our model.

The final component of the interface is timing. First, we modified Celeste Classic to only run frames when a
key is pressed. This allows the agent to run in in-game time, which wouldn't be possible otherwise: Celeste
usually runs at 30 fps, and the hardware we used to train our model cannot compute gradients that quickly.
Second, we implemented a ``frame skip'' mechanism to the interface, which tells the game to run a certain
number of frames---many more than one---after the agent selects an action. The benefit of this is twofold: first,
it prevents our model from training on redundant information. The game's state does not see significant change
over consecutive frames. Second, frame skipping allows transitions to more directly reflect the consequences
of an action.
For example, say the agent chooses to dash upwards. Due to the way Celeste is designed, the player cannot
take any other action until that dash is complete. Our frame-skip mechanism will run the game until the dash
is complete, returning a new state only when a new action can be taken.

4.2 Agent

The agent we trained to solve Celeste Classic is a plain deep Q-learning agent. A neural network estimates
the reward of taking each possible action at a given state, and the agent selects the action with the highest
predicted reward. This network is a four-layer fully-connected linear net with 128 nodes in each layer and a
ReLU activation function on each hidden node. It has two input nodes that track the player's X and Y-position,
and nine output nodes which each correspond to an action the agent can take.

4.2.1 Reward

During training, the agent receives 10 reward whenever it
reaches a checkpoint (at right) or completes the stage. If the
agent skips a checkpoint, it gets extra reward for each check-
point it skipped. For example, jumping from point 1 to point 3
would give the agent 20 reward.

These checkpoints are distributed close enough to keep the agent
progressing, but far enough away to give it a challenge. Points 4
and 5 are particularly interesting in this respect. When training
an agent without point 4, it would often reach the ledge and fall
off, getting no reward.

Despite many thousand epochs, this training process was unable
to finish the stage. Though the ledge under point 4 is fairly easy
to reach from either point 2 or 3, it is highly unlikely that an
untrained agent would make it from point 2 to point 5 without
the extra reward at point 4. Locations of non-final checkpoints

3



4.2.2 Exploration Probability

At every step, we use the Q network to predict the expected reward for taking each of the nine actions. Naturally,
the best action to take is the one with the highest predicted reward. In order to encourage exploration, we also
take a random action with a probability given by

P (c) = ϵ1 + (ϵ0 − ϵ1)e
−c/d

Where ϵ0 is the initial random probability, ϵ1 is the end random probability, and d is the rate at which P (c)
decays to ϵ1. c is a rather unusual ``time'' parameter: it counts the number of times the agent has reached the
next point.

Usually, such ϵ policies depend on the number of training steps competed. For many applications, this makes
sense: if a model is trained on many iterations, it begins to perform better, and thus has less of a need to explore.
In our case, that doesn't work: we need to explore until we find a way to reach a checkpoint, and rely on the
model's preditions once we've found one. Therefore, instead of computing P with respect to a simple iteration
counter, we instead compute it with respect to c.

4.2.3 Target Network, Replay Memory

To prevent an unstable training process, we use a target network as described in Human-Level Control [6].
However, instead of periodically hard-resetting the target network to the Q network, we use a soft update
defined by the following equation, where WQ and WT are weights of the Q network and target network,
respectively.

WT = 0.05WQ + 0.95WT

We also use replay memory from the same paper, with a batch size of 100 and a total size of 50,000. Our model
is optimized using Adam with a learning rate of 0.001.

4.2.4 Bellman Equation

Our goal is to train our model to approximate the value function Q(s, a), which tells us the value of taking
action a at state s. This approximation can then be used to choose the best action at each state. We define Q
using the Bellman equation:

Q(s, a) = r(s) + γQ(sa)

Where r(s) is the reward at state s, Q(sa) is the value of the state we get to when we perform action a at state
s, and γ is a discount factor that makes present reward more valuable than future reward. In our model, we set
γ to 0.9.

4



Part 5: Results

After sufficient training, our model consistently completed the first stage of Celeste. 4000 training episodes
were required to achieve this result.

The figure below summarizes our model's performance during training. The color of each pixel in the plot is
determined by the action with the highest predicted value, and the path the agent takes through the stage is
shown in white. The agent completes the stage in the ``4000 Episodes'' plot, and fails to complete it within the
allocated time limit in all the rest. Training the model on more than 4000 episodes did not have a significant
effect on the agent's behavior.

A few things are interesting about these results. First, we see that the best-action patterns in the above graphs
to not resemble the shape of the stage. At every point that the agent doesn't visit, the predicted best action
does not resemble the action an intelligent human player would take. This is because the model is not trained
on these points. The predictions there are a side-effect of the training steps applied to the points in the agent's
path.

Second, the plots above clearly depict the effect of our modified explore/exploit policy. We can see the first
few segments of the agent's path are the same in each graph. In addition, the more the agent trains, the longer
this repeated path is. This is a direct result of our explore/exploit policy: our agent stops exploring sections of
the stage it can reliably complete, and therefore repeats paths that work.

5



Part 6: Conclusion

Using the methods described above, we were able to successfully train a Q-learning agent to play Celeste
Classic.

The greatest limitation of our model is its slow training speed. It took the model 4000 episodes to complete
the first stage, which translates to about 8 hours of training time. A simple evolutionary algorithm, such as the
one presented in AI Learns to Speedrun Celeste [1] would likely have better performance than our Q-learning
agent. Such an algorithm is much better for incremental tasks (such as this one) than a Q-learning algorithm.

We could further develop this model by making it more autonomous---specifically, by training it on raw pixel
data rather than curated (player_x, player_y) tuples. This modification would significantly slow down
training, and is therefore best left out of a project with a ten-week time limit.

While developing our model, we encountered a few questions that we could not resolve. The first of these is
the effect of position scaling, which is visible in the graphs below. Note that colors are inconsistent between
the graphs---since we refactored our graphing tools after the right graph was generated.

``Best-action'' plot after 500 training episodes
with position rescaled to the range [0, 1].

``Best-action'' plot after 500 training episodes
with position in the original range [0, 128].

In these graphs, we see that, without changing the model, the scaling of input values has a significant effect
on the model's performance. Large inputs cause a ``zoomed-out linear fanning'' effect in the rightmost graph,
while the left graph, with rescaled values, has a much more reasonable ``blob'' pattern.

In addition to this, we found that re-centering the game's coordinate system so that (0, 0) is in the center
rather than the top-left also has a significant effect on the model's performance. Without centering, the model
performs perfectly well. With centering, our loss grows uncontrollably and the model fails to converge.

In both of these cases, the results are surprising. In theory, re-scaled or re-centered data should not affect the
performance of the model. This should be accounted for while training, with the weights of the neural network
being adjusted to account for different input ranges. We do not have an explanation for this behavior, and
would be glad to find one.

6



Part 7: Contribution Statement

Ricardo:

code hypothesis model design literature review research report

Mark:

code model design report literature review plots

Timothy:

code hypothesis model design research code debugging report

Kelly:

code hypothesis model design organization report presentation

References: Sites

[1] AiSpawn. AI Learns to Speedrun Celeste. Youtube. url: https://www.youtube.com/watch?v=
y8g1AcTYovg. Accessed 2023-02-22.

[2] Celeste. 2018. url: https://www.celestegame.com. Accessed 2023-02-25.

[3] Celeste Classic. 2015. url: https://www.lexaloffle.com/bbs/?pid=11722. Accessed 2023-02-25.
[4] Yuansong Feng et al. Train a Mario-playing RL Agent. url: https://pytorch.org/tutorials/

intermediate/mario_rl_tutorial.html. Accessed 2023-02-25.

[5] Gymnasium. url: https://github.com/Farama-Foundation/Gymnasium. Accessed 2023-02-25.

[8] PICO-8. url: https://www.lexaloffle.com/pico-8.php. Accessed 2023-02-25.

[9] SC2 AI Arena. url: https://sc2ai.net. Accessed 2023-02-25.

References: Articles

[6] Volodymyr Mnih et al. ``Human-level control through deep reinforcement learning''. In: Nature 518.7540
(Feb. 2015), pp. 529–533. issn: 00280836. url: http://dx.doi.org/10.1038/nature14236.

[7] Volodymyr Mnih et al. ``Playing Atari with Deep Reinforcement Learning''. In: (2013). url: http:
//arxiv.org/abs/1312.5602.

[10] David Silver et al. ``Mastering the game of Go without human knowledge''. In: Nature 550 (2017),
pp. 354–. url: http://dx.doi.org/10.1038/nature24270.

Part 8: Appendix

Our code is available at https://git.betalupi.com/Mark/celeste-ai

7

https://www.youtube.com/watch?v=y8g1AcTYovg
https://www.youtube.com/watch?v=y8g1AcTYovg
https://www.celestegame.com
https://www.lexaloffle.com/bbs/?pid=11722
https://pytorch.org/tutorials/intermediate/mario_rl_tutorial.html
https://pytorch.org/tutorials/intermediate/mario_rl_tutorial.html
https://github.com/Farama-Foundation/Gymnasium
https://www.lexaloffle.com/pico-8.php
https://sc2ai.net
http://dx.doi.org/10.1038/nature14236
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://dx.doi.org/10.1038/nature24270

	Abstract
	Background
	Introduction
	Methods
	Interface
	Agent
	Reward
	Exploration Probability
	Target Network, Replay Memory
	Bellman Equation


	Results
	Conclusion
	Contribution Statement
	Appendix

