Compare commits
7 Commits
f40b58508e
...
24dd65ace8
Author | SHA1 | Date |
---|---|---|
Mark | 24dd65ace8 | |
Mark | 755495a992 | |
Mark | 3745346c5b | |
Mark | 25390f5455 | |
Mark | c185965657 | |
Mark | 03135e2ef9 | |
Mark | 0b61702677 |
|
@ -70,21 +70,24 @@ class Celeste:
|
|||
#"ypos",
|
||||
"xpos_scaled",
|
||||
"ypos_scaled",
|
||||
"can_dash_int"
|
||||
#"can_dash_int"
|
||||
#"next_point_x",
|
||||
#"next_point_y"
|
||||
]
|
||||
|
||||
# Targets the agent tries to reach.
|
||||
# The last target MUST be outside the frame.
|
||||
# Format is X, Y, range, force_y
|
||||
# force_y is optional. If true, y_value MUST match perfectly.
|
||||
target_checkpoints = [
|
||||
[ # Stage 1
|
||||
#(28, 88), # Start pillar
|
||||
(60, 80), # Middle pillar
|
||||
(105, 64), # Right ledge
|
||||
(25, 40), # Left ledge
|
||||
(110, 16), # End ledge
|
||||
(110, -2), # Next stage
|
||||
#(28, 88, 8), # Start pillar
|
||||
(60, 80, 8), # Middle pillar
|
||||
(105, 64, 8), # Right ledge
|
||||
(25, 40, 8), # Left ledge
|
||||
(97, 24, 5, True), # Small end ledge
|
||||
(110, 16, 8), # End ledge
|
||||
(110, -20, 8), # Next stage
|
||||
]
|
||||
]
|
||||
|
||||
|
@ -99,7 +102,7 @@ class Celeste:
|
|||
self,
|
||||
pico_path,
|
||||
*,
|
||||
state_timeout = 30,
|
||||
state_timeout = 20,
|
||||
cart_name = "hackcel.p8",
|
||||
):
|
||||
|
||||
|
@ -144,7 +147,7 @@ class Celeste:
|
|||
self._resetting = False # True between a call to .reset() and the first state message from pico.
|
||||
self._keys = {} # Dictionary of "key": bool
|
||||
|
||||
def act(self, action: str):
|
||||
def act(self, action: str | int):
|
||||
"""
|
||||
Specify what keys should be down. This does NOT send key events.
|
||||
Celeste._apply_keys() does that at the right time.
|
||||
|
@ -153,6 +156,9 @@ class Celeste:
|
|||
action (str): key name, as in Celeste.action_space
|
||||
"""
|
||||
|
||||
if isinstance(action, int):
|
||||
action = Celeste.action_space[action]
|
||||
|
||||
self._keys = {}
|
||||
if action is None:
|
||||
return
|
||||
|
@ -208,9 +214,9 @@ class Celeste:
|
|||
[int(self._internal_state["rx"])]
|
||||
)
|
||||
|
||||
if len(Celeste.target_checkpoints) < stage:
|
||||
next_point_x = None
|
||||
next_point_y = None
|
||||
if len(Celeste.target_checkpoints) <= stage:
|
||||
next_point_x = 0
|
||||
next_point_y = 0
|
||||
else:
|
||||
next_point_x = Celeste.target_checkpoints[stage][self._next_checkpoint_idx][0]
|
||||
next_point_y = Celeste.target_checkpoints[stage][self._next_checkpoint_idx][1]
|
||||
|
@ -329,46 +335,65 @@ class Celeste:
|
|||
|
||||
|
||||
|
||||
if self.state.stage <= 0:
|
||||
# Calculate distance to each point
|
||||
x = self.state.xpos
|
||||
y = self.state.ypos
|
||||
dist = np.zeros(len(Celeste.target_checkpoints[self.state.stage]), dtype=np.float16)
|
||||
for i, c in enumerate(Celeste.target_checkpoints[self.state.stage]):
|
||||
if i < self._next_checkpoint_idx:
|
||||
dist[i] = 1000
|
||||
continue
|
||||
|
||||
# Calculate distance to each point
|
||||
x = self.state.xpos
|
||||
y = self.state.ypos
|
||||
dist = np.zeros(len(Celeste.target_checkpoints[self.state.stage]), dtype=np.float16)
|
||||
for i, c in enumerate(Celeste.target_checkpoints[self.state.stage]):
|
||||
if i < self._next_checkpoint_idx:
|
||||
dist[i] = 1000
|
||||
continue
|
||||
|
||||
# Update checkpoints
|
||||
tx, ty = c
|
||||
dist[i] = (math.sqrt(
|
||||
(x-tx)*(x-tx) +
|
||||
((y-ty)*(y-ty))/2
|
||||
# Possible modification:
|
||||
# make x-distance twice as valuable as y-distance
|
||||
))
|
||||
min_idx = int(dist.argmin())
|
||||
dist = int(dist[min_idx])
|
||||
# Update checkpoints
|
||||
tx, ty = c[:2]
|
||||
dist[i] = (math.sqrt(
|
||||
(x-tx)*(x-tx) +
|
||||
((y-ty)*(y-ty))/2
|
||||
# Possible modification:
|
||||
# make x-distance twice as valuable as y-distance
|
||||
))
|
||||
min_idx = int(dist.argmin())
|
||||
dist = int(dist[min_idx])
|
||||
|
||||
|
||||
if dist <= 8:
|
||||
print(f"Got point {min_idx}")
|
||||
self._next_checkpoint_idx = min_idx + 1
|
||||
self._last_checkpoint_state = self._state_counter
|
||||
t = Celeste.target_checkpoints[self.state.stage][min_idx]
|
||||
range = t[2]
|
||||
if len(t) == 3:
|
||||
force_y = False
|
||||
else:
|
||||
force_y = t[3]
|
||||
|
||||
# Recalculate distance to new point
|
||||
tx, ty = Celeste.target_checkpoints[self.state.stage][self._next_checkpoint_idx]
|
||||
dist = math.sqrt(
|
||||
(x-tx)*(x-tx) +
|
||||
((y-ty)*(y-ty))/2
|
||||
)
|
||||
if force_y:
|
||||
got_point = (
|
||||
dist <= range and
|
||||
y == t[1]
|
||||
)
|
||||
else:
|
||||
got_point = dist <= range
|
||||
|
||||
# Timeout if we spend too long between points
|
||||
elif self._state_counter - self._last_checkpoint_state > self.state_timeout:
|
||||
self._internal_state["dc"] = str(int(self._internal_state["dc"]) + 1)
|
||||
if got_point:
|
||||
self._next_checkpoint_idx = min_idx + 1
|
||||
self._last_checkpoint_state = self._state_counter
|
||||
|
||||
# Recalculate distance to new point
|
||||
tx, ty = (
|
||||
Celeste.target_checkpoints
|
||||
[self.state.stage]
|
||||
[self._next_checkpoint_idx]
|
||||
[:2]
|
||||
)
|
||||
dist = math.sqrt(
|
||||
(x-tx)*(x-tx) +
|
||||
((y-ty)*(y-ty))/2
|
||||
)
|
||||
|
||||
# Timeout if we spend too long between points
|
||||
elif self._state_counter - self._last_checkpoint_state > self.state_timeout:
|
||||
self._internal_state["dc"] = str(int(self._internal_state["dc"]) + 1)
|
||||
|
||||
|
||||
self._dist = dist
|
||||
self._dist = dist
|
||||
|
||||
# Call step callbacks
|
||||
# These should call celeste.act() to set next input
|
||||
|
|
|
@ -5,7 +5,7 @@ from collections import namedtuple
|
|||
Transition = namedtuple(
|
||||
"Transition",
|
||||
(
|
||||
"state",
|
||||
"last_state",
|
||||
"action",
|
||||
"next_state",
|
||||
"reward"
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import torch
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
import matplotlib as mpl
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# All of the following are required to load
|
||||
|
@ -34,7 +35,7 @@ def best_action(
|
|||
|
||||
|
||||
# Compute preditions
|
||||
p = np.zeros((128, 128, 2), dtype=np.float32)
|
||||
p = np.zeros((128, 128), dtype=np.float32)
|
||||
with torch.no_grad():
|
||||
for r in range(len(p)):
|
||||
for c in range(len(p[r])):
|
||||
|
@ -43,26 +44,31 @@ def best_action(
|
|||
|
||||
k = np.asarray(policy_net(
|
||||
torch.tensor(
|
||||
[x, y, 0],
|
||||
[x, y],
|
||||
dtype = torch.float32,
|
||||
device = device
|
||||
).unsqueeze(0)
|
||||
)[0])
|
||||
p[r][c][0] = np.argmax(k)
|
||||
p[r][c] = np.argmax(k)
|
||||
|
||||
k = np.asarray(policy_net(
|
||||
torch.tensor(
|
||||
[x, y, 1],
|
||||
dtype = torch.float32,
|
||||
device = device
|
||||
).unsqueeze(0)
|
||||
)[0])
|
||||
p[r][c][1] = np.argmax(k)
|
||||
|
||||
cmap = mpl.colors.ListedColormap(
|
||||
[
|
||||
"forestgreen",
|
||||
"firebrick",
|
||||
"lightgreen",
|
||||
"salmon",
|
||||
"darkturquoise",
|
||||
"sandybrown",
|
||||
"olive",
|
||||
"darkorchid",
|
||||
"mediumvioletred"
|
||||
]
|
||||
)
|
||||
|
||||
# Plot predictions
|
||||
fig, axs = plt.subplots(1, 2, figsize = (10, 10))
|
||||
ax = axs[0]
|
||||
fig, axs = plt.subplots(1, 1, figsize = (20, 20))
|
||||
ax = axs
|
||||
ax.set(
|
||||
adjustable = "box",
|
||||
aspect = "equal",
|
||||
|
@ -70,30 +76,16 @@ def best_action(
|
|||
)
|
||||
|
||||
plot = ax.pcolor(
|
||||
p[:,:,0],
|
||||
cmap = "Set1",
|
||||
p,
|
||||
cmap = cmap,
|
||||
vmin = 0,
|
||||
vmax = 8
|
||||
)
|
||||
ax.invert_yaxis()
|
||||
fig.colorbar(plot)
|
||||
cbar = fig.colorbar(plot, ticks = list(range(0, 9)))
|
||||
cbar.ax.set_yticklabels(Celeste.action_space)
|
||||
|
||||
ax = axs[1]
|
||||
ax.set(
|
||||
adjustable = "box",
|
||||
aspect = "equal",
|
||||
title = "Best Action"
|
||||
)
|
||||
|
||||
plot = ax.pcolor(
|
||||
p[:,:,0],
|
||||
cmap = "Set1",
|
||||
vmin = 0,
|
||||
vmax = 8
|
||||
)
|
||||
|
||||
ax.invert_yaxis()
|
||||
fig.colorbar(plot)
|
||||
|
||||
fig.savefig(out_filename)
|
||||
plt.close()
|
||||
|
|
|
@ -43,7 +43,7 @@ def predicted_reward(
|
|||
|
||||
k = np.asarray(policy_net(
|
||||
torch.tensor(
|
||||
[x, y, 0],
|
||||
[x, y],
|
||||
dtype = torch.float32,
|
||||
device = device
|
||||
).unsqueeze(0)
|
||||
|
|
|
@ -5,33 +5,31 @@ import random
|
|||
import math
|
||||
import json
|
||||
import torch
|
||||
import shutil
|
||||
|
||||
|
||||
from celeste_ai import Celeste
|
||||
from celeste_ai import DQN
|
||||
from celeste_ai import Transition
|
||||
|
||||
from celeste_ai.util.screenshots import ScreenshotManager
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Where to read/write model data.
|
||||
model_data_root = Path("model_data/current")
|
||||
|
||||
# Where PICO-8 saves screenshots.
|
||||
# Probably your desktop.
|
||||
screenshot_source = Path("/home/mark/Desktop")
|
||||
sm = ScreenshotManager(
|
||||
# Where PICO-8 saves screenshots.
|
||||
# Probably your desktop.
|
||||
source = Path("/home/mark/Desktop"),
|
||||
pattern = "hackcel_*.png",
|
||||
target = model_data_root / "screenshots"
|
||||
).clean() # Remove old screenshots
|
||||
|
||||
model_save_path = model_data_root / "model.torch"
|
||||
model_archive_dir = model_data_root / "model_archive"
|
||||
model_train_log = model_data_root / "train_log"
|
||||
screenshot_dir = model_data_root / "screenshots"
|
||||
model_data_root.mkdir(parents = True, exist_ok = True)
|
||||
model_archive_dir.mkdir(parents = True, exist_ok = True)
|
||||
screenshot_dir.mkdir(parents = True, exist_ok = True)
|
||||
|
||||
|
||||
# Remove old screenshots
|
||||
shots = screenshot_source.glob("hackcel_*.png")
|
||||
for s in shots:
|
||||
s.unlink()
|
||||
|
||||
|
||||
compute_device = torch.device(
|
||||
|
@ -45,66 +43,51 @@ if __name__ == "__main__":
|
|||
|
||||
|
||||
# Epsilon-greedy parameters
|
||||
#
|
||||
# Original docs:
|
||||
# EPS_START is the starting value of epsilon
|
||||
# EPS_END is the final value of epsilon
|
||||
# EPS_DECAY controls the rate of exponential decay of epsilon, higher means a slower decay
|
||||
# Probability of choosing a random action starts at
|
||||
# EPS_START and decays to EPS_END.
|
||||
# EPS_DECAY controls the rate of decay.
|
||||
EPS_START = 0.9
|
||||
EPS_END = 0.02
|
||||
EPS_DECAY = 100
|
||||
|
||||
# How many times we've reached each point.
|
||||
# Used to compute epsilon-greedy probability with
|
||||
# the parameters above.
|
||||
point_counter = [0] * len(Celeste.target_checkpoints[0])
|
||||
|
||||
BATCH_SIZE = 100
|
||||
# Learning rate of target_net.
|
||||
# Controls how soft our soft update is.
|
||||
#
|
||||
# Should be between 0 and 1.
|
||||
# Large values
|
||||
# Small values do the opposite.
|
||||
#
|
||||
# A value of one makes target_net
|
||||
# change at the same rate as policy_net.
|
||||
#
|
||||
# A value of zero makes target_net
|
||||
# not change at all.
|
||||
TAU = 0.05
|
||||
|
||||
|
||||
# GAMMA is the discount factor as mentioned in the previous section
|
||||
# Bellman equation time-discount factor
|
||||
GAMMA = 0.9
|
||||
|
||||
steps_done = 0
|
||||
num_episodes = 100
|
||||
episode_number = 0
|
||||
archive_interval = 10
|
||||
# Train on this many transitions from
|
||||
# replay memory each round
|
||||
BATCH_SIZE = 100
|
||||
|
||||
# Controls target_net soft update.
|
||||
# Should be between 0 and 1.
|
||||
TAU = 0.05
|
||||
|
||||
# Optimizer learning rate
|
||||
learning_rate = 0.001
|
||||
|
||||
# Save a snapshot of the model every n
|
||||
# episodes.
|
||||
model_save_interval = 10
|
||||
|
||||
|
||||
|
||||
# How many times we've reached each point.
|
||||
# This is used to compute epsilon-greedy probability.
|
||||
point_counter = [0] * len(Celeste.target_checkpoints[0])
|
||||
|
||||
n_episodes = 0 # Number of episodes we've trained on
|
||||
n_steps = 0 # Number of training steps we've completed
|
||||
|
||||
# Create replay memory.
|
||||
#
|
||||
# Transition: a container for naming data (defined in util.py)
|
||||
# Memory: a deque that holds recent states as Transitions
|
||||
# Has a fixed length, drops oldest
|
||||
# element if maxlen is exceeded.
|
||||
# Holds <Transition> objects, defined in
|
||||
# network.py
|
||||
memory = deque([], maxlen=50_000)
|
||||
|
||||
policy_net = DQN(
|
||||
n_observations,
|
||||
n_actions
|
||||
).to(compute_device)
|
||||
|
||||
target_net = DQN(
|
||||
n_observations,
|
||||
n_actions
|
||||
).to(compute_device)
|
||||
|
||||
policy_net = DQN(n_observations, n_actions).to(compute_device)
|
||||
target_net = DQN(n_observations, n_actions).to(compute_device)
|
||||
target_net.load_state_dict(policy_net.state_dict())
|
||||
|
||||
|
||||
learning_rate = 0.001
|
||||
optimizer = torch.optim.AdamW(
|
||||
policy_net.parameters(),
|
||||
lr = learning_rate,
|
||||
|
@ -122,11 +105,43 @@ if __name__ == "__main__":
|
|||
target_net.load_state_dict(checkpoint["target_state_dict"])
|
||||
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
|
||||
memory = checkpoint["memory"]
|
||||
episode_number = checkpoint["episode_number"] + 1
|
||||
steps_done = checkpoint["steps_done"]
|
||||
|
||||
n_episodes = checkpoint["n_episodes"]
|
||||
n_steps = checkpoint["n_steps"]
|
||||
point_counter = checkpoint["point_counter"]
|
||||
|
||||
def select_action(state, steps_done):
|
||||
|
||||
|
||||
def save_model(path):
|
||||
torch.save({
|
||||
# Newtorks
|
||||
"policy_state_dict": policy_net.state_dict(),
|
||||
"target_state_dict": target_net.state_dict(),
|
||||
"optimizer_state_dict": optimizer.state_dict(),
|
||||
|
||||
# Training data
|
||||
"memory": memory,
|
||||
"point_counter": point_counter,
|
||||
"n_episodes": n_episodes,
|
||||
"n_steps": n_steps,
|
||||
|
||||
# Hyperparameters,
|
||||
# for reference
|
||||
"eps_start": EPS_START,
|
||||
"eps_end": EPS_END,
|
||||
"eps_decay": EPS_DECAY,
|
||||
"batch_size": BATCH_SIZE,
|
||||
"tau": TAU,
|
||||
"learning_rate": learning_rate,
|
||||
"gamma": GAMMA
|
||||
}, path
|
||||
)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def select_action(state, x) -> int:
|
||||
"""
|
||||
Select an action using an epsilon-greedy policy.
|
||||
|
||||
|
@ -136,19 +151,13 @@ def select_action(state, steps_done):
|
|||
Decay rate is controlled by EPS_DECAY.
|
||||
"""
|
||||
|
||||
# Random number 0 <= x < 1
|
||||
sample = random.random()
|
||||
|
||||
# Calculate random step threshhold
|
||||
eps_threshold = (
|
||||
EPS_END + (EPS_START - EPS_END) *
|
||||
math.exp(
|
||||
-1.0 * steps_done /
|
||||
EPS_DECAY
|
||||
)
|
||||
math.exp(-1.0 * x / EPS_DECAY)
|
||||
)
|
||||
|
||||
if sample > eps_threshold:
|
||||
if random.random() > eps_threshold:
|
||||
with torch.no_grad():
|
||||
# t.max(1) will return the largest column value of each row.
|
||||
# second column on max result is index of where max element was
|
||||
|
@ -175,7 +184,7 @@ def optimize_model():
|
|||
|
||||
# Conversion.
|
||||
# Combine states, actions, and rewards into their own tensors.
|
||||
state_batch = torch.cat(batch.state)
|
||||
last_state_batch = torch.cat(batch.last_state)
|
||||
action_batch = torch.cat(batch.action)
|
||||
reward_batch = torch.cat(batch.reward)
|
||||
|
||||
|
@ -209,7 +218,7 @@ def optimize_model():
|
|||
# This gives us a tensor that contains the return we expect to get
|
||||
# at that state if we follow the model's advice.
|
||||
|
||||
state_action_values = policy_net(state_batch).gather(1, action_batch)
|
||||
state_action_values = policy_net(last_state_batch).gather(1, action_batch)
|
||||
|
||||
|
||||
|
||||
|
@ -282,36 +291,21 @@ def optimize_model():
|
|||
|
||||
|
||||
def on_state_before(celeste):
|
||||
global steps_done
|
||||
|
||||
state = celeste.state
|
||||
|
||||
pt_state = torch.tensor(
|
||||
[getattr(state, x) for x in Celeste.state_number_map],
|
||||
dtype = torch.float32,
|
||||
device = compute_device
|
||||
).unsqueeze(0)
|
||||
|
||||
|
||||
action = select_action(
|
||||
pt_state,
|
||||
# Put state in a tensor
|
||||
torch.tensor(
|
||||
[getattr(state, x) for x in Celeste.state_number_map],
|
||||
dtype = torch.float32,
|
||||
device = compute_device
|
||||
).unsqueeze(0),
|
||||
|
||||
# Random action probability is determined by
|
||||
# the number of times we've reached the next point.
|
||||
point_counter[state.next_point]
|
||||
)
|
||||
str_action = Celeste.action_space[action]
|
||||
|
||||
|
||||
"""
|
||||
action = None
|
||||
while (action) is None or ((not state.can_dash) and (str_action not in ["left", "right"])):
|
||||
action = select_action(
|
||||
pt_state,
|
||||
steps_done
|
||||
)
|
||||
str_action = Celeste.action_space[action]
|
||||
"""
|
||||
|
||||
steps_done += 1
|
||||
|
||||
|
||||
# For manual testing
|
||||
#str_action = ""
|
||||
|
@ -319,86 +313,114 @@ def on_state_before(celeste):
|
|||
# str_action = input("action> ")
|
||||
#action = Celeste.action_space.index(str_action)
|
||||
|
||||
print(str_action)
|
||||
celeste.act(str_action)
|
||||
print(Celeste.action_space[action])
|
||||
celeste.act(action)
|
||||
|
||||
return state, action
|
||||
|
||||
|
||||
def on_state_after(celeste, before_out):
|
||||
global episode_number
|
||||
|
||||
state, action = before_out
|
||||
next_state = celeste.state
|
||||
|
||||
pt_state = torch.tensor(
|
||||
[getattr(state, x) for x in Celeste.state_number_map],
|
||||
dtype = torch.float32,
|
||||
device = compute_device
|
||||
).unsqueeze(0)
|
||||
|
||||
pt_action = torch.tensor(
|
||||
[[ action ]],
|
||||
device = compute_device,
|
||||
dtype = torch.long
|
||||
return (
|
||||
state, # CelesteState
|
||||
action # Integer
|
||||
)
|
||||
|
||||
finished_stage = False
|
||||
|
||||
def compute_reward(last_state, state):
|
||||
global point_counter
|
||||
|
||||
reward = None
|
||||
|
||||
# No reward if dead
|
||||
if next_state.deaths != 0:
|
||||
pt_next_state = None
|
||||
if state.deaths != 0:
|
||||
reward = 0
|
||||
|
||||
# Reward for finishing a stage
|
||||
elif next_state.stage >= 1:
|
||||
finished_stage = True
|
||||
reward = next_state.next_point - state.next_point
|
||||
elif state.stage >= 1:
|
||||
print("FINISHED STAGE!!")
|
||||
|
||||
# We don't set a fixed reward here because the agent may
|
||||
# complete the stage before getting all points.
|
||||
# The below line provides extra reward for taking shortcuts.
|
||||
reward = state.next_point - last_state.next_point
|
||||
reward += 1
|
||||
|
||||
# Add to point counter
|
||||
for i in range(state.next_point, state.next_point + reward):
|
||||
for i in range(last_state.next_point, len(point_counter)):
|
||||
point_counter[i] += 1
|
||||
|
||||
# Regular reward
|
||||
# Reward for reaching a checkpoint
|
||||
elif last_state.next_point != state.next_point:
|
||||
print(f"Got point {state.next_point}")
|
||||
|
||||
reward = state.next_point - last_state.next_point
|
||||
|
||||
# Add to point counter
|
||||
for i in range(last_state.next_point, last_state.next_point + reward):
|
||||
point_counter[i] += 1
|
||||
|
||||
# No reward otherwise
|
||||
else:
|
||||
pt_next_state = torch.tensor(
|
||||
[getattr(next_state, x) for x in Celeste.state_number_map],
|
||||
dtype = torch.float32,
|
||||
device = compute_device
|
||||
).unsqueeze(0)
|
||||
reward = 0
|
||||
|
||||
# Strawberry reward
|
||||
# (Will probably break current version of model)
|
||||
#if state.berries[state.stage] and not state.berries[state.stage]:
|
||||
# print(f"Got stage {state.stage} bonus")
|
||||
# reward += 1
|
||||
|
||||
assert reward is not None
|
||||
return reward * 10
|
||||
|
||||
|
||||
def on_state_after(celeste, before_out):
|
||||
global n_episodes
|
||||
global n_steps
|
||||
|
||||
if state.next_point == next_state.next_point:
|
||||
reward = 0
|
||||
else:
|
||||
print(f"Got point {state.next_point}")
|
||||
# Reward for reaching a point
|
||||
reward = next_state.next_point - state.next_point
|
||||
|
||||
# Add to point counter
|
||||
for i in range(state.next_point, state.next_point + reward):
|
||||
point_counter[i] += 1
|
||||
|
||||
# Strawberry reward
|
||||
if next_state.berries[state.stage] and not state.berries[state.stage]:
|
||||
print(f"Got stage {state.stage} bonus")
|
||||
reward += 1
|
||||
last_state, action = before_out
|
||||
next_state = celeste.state
|
||||
dead = next_state.deaths != 0
|
||||
done = next_state.stage >= 1
|
||||
|
||||
|
||||
reward = compute_reward(last_state, next_state)
|
||||
|
||||
|
||||
reward = reward * 10
|
||||
pt_reward = torch.tensor([reward], device = compute_device)
|
||||
|
||||
if dead:
|
||||
next_state = None
|
||||
elif done:
|
||||
# We don't set the next state to None because
|
||||
# the optimization routine forces zero reward
|
||||
# for terminal states.
|
||||
# Copy last state instead. It's a hack, but it
|
||||
# should work.
|
||||
next_state = last_state
|
||||
|
||||
# Add this state transition to memory.
|
||||
memory.append(
|
||||
Transition(
|
||||
pt_state,
|
||||
pt_action,
|
||||
pt_next_state,
|
||||
pt_reward
|
||||
# last state
|
||||
torch.tensor(
|
||||
[getattr(last_state, x) for x in Celeste.state_number_map],
|
||||
dtype = torch.float32,
|
||||
device = compute_device
|
||||
).unsqueeze(0),
|
||||
|
||||
# action
|
||||
torch.tensor(
|
||||
[[ action ]],
|
||||
device = compute_device,
|
||||
dtype = torch.long
|
||||
),
|
||||
|
||||
# next state
|
||||
# None if dead or done.
|
||||
torch.tensor(
|
||||
[getattr(next_state, x) for x in Celeste.state_number_map],
|
||||
dtype = torch.float32,
|
||||
device = compute_device
|
||||
).unsqueeze(0) if next_state is not None else None,
|
||||
|
||||
# reward
|
||||
torch.tensor(
|
||||
[reward],
|
||||
device = compute_device
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
|
@ -406,11 +428,10 @@ def on_state_after(celeste, before_out):
|
|||
print("")
|
||||
|
||||
|
||||
# Perform a training step
|
||||
loss = None
|
||||
|
||||
# Only train the network if we have enough
|
||||
# transitions in memory to do so.
|
||||
if len(memory) >= BATCH_SIZE:
|
||||
n_steps += 1
|
||||
loss = optimize_model()
|
||||
|
||||
# Soft update target_net weights
|
||||
|
@ -423,65 +444,43 @@ def on_state_after(celeste, before_out):
|
|||
)
|
||||
target_net.load_state_dict(target_net_state)
|
||||
|
||||
# Move on to the next episode once we reach
|
||||
# a terminal state.
|
||||
if (next_state.deaths != 0 or finished_stage):
|
||||
|
||||
|
||||
# Move on to the next episode and run
|
||||
# housekeeping tasks.
|
||||
if (dead or done):
|
||||
s = celeste.state
|
||||
n_episodes += 1
|
||||
|
||||
# Move screenshots
|
||||
sm.move(
|
||||
number = n_episodes,
|
||||
overwrite = True
|
||||
)
|
||||
|
||||
|
||||
# Log this episode
|
||||
with model_train_log.open("a") as f:
|
||||
f.write(json.dumps({
|
||||
"n_episodes": n_episodes,
|
||||
"n_steps": n_steps,
|
||||
"checkpoints": s.next_point,
|
||||
"state_count": s.state_count,
|
||||
"loss": None if loss is None else loss.item()
|
||||
"loss": None if loss is None else loss.item(),
|
||||
"done": done
|
||||
}) + "\n")
|
||||
|
||||
|
||||
# Save model
|
||||
torch.save({
|
||||
"policy_state_dict": policy_net.state_dict(),
|
||||
"target_state_dict": target_net.state_dict(),
|
||||
"optimizer_state_dict": optimizer.state_dict(),
|
||||
"memory": memory,
|
||||
"point_counter": point_counter,
|
||||
"episode_number": episode_number,
|
||||
"steps_done": steps_done,
|
||||
|
||||
# Hyperparameters
|
||||
"eps_start": EPS_START,
|
||||
"eps_end": EPS_END,
|
||||
"eps_decay": EPS_DECAY,
|
||||
"batch_size": BATCH_SIZE,
|
||||
"tau": TAU,
|
||||
"learning_rate": learning_rate,
|
||||
"gamma": GAMMA
|
||||
}, model_save_path)
|
||||
|
||||
|
||||
# Clean up screenshots
|
||||
shots = screenshot_source.glob("hackcel_*.png")
|
||||
|
||||
target = screenshot_dir / Path(f"{episode_number}")
|
||||
target.mkdir(parents = True)
|
||||
|
||||
for s in shots:
|
||||
s.rename(target / s.name)
|
||||
|
||||
# Save a snapshot
|
||||
if episode_number % archive_interval == 0:
|
||||
torch.save({
|
||||
"policy_state_dict": policy_net.state_dict(),
|
||||
"target_state_dict": target_net.state_dict(),
|
||||
"optimizer_state_dict": optimizer.state_dict(),
|
||||
"memory": memory,
|
||||
"episode_number": episode_number,
|
||||
"steps_done": steps_done
|
||||
}, model_archive_dir / f"{episode_number}.torch")
|
||||
if n_episodes % model_save_interval == 0:
|
||||
save_model(model_archive_dir / f"{n_episodes}.torch")
|
||||
shutil.copy(model_archive_dir / f"{n_episodes}.torch", model_save_path)
|
||||
|
||||
|
||||
print("Game over. Resetting.")
|
||||
episode_number += 1
|
||||
celeste.reset()
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
c = Celeste(
|
||||
"resources/pico-8/linux/pico8"
|
||||
|
|
|
@ -0,0 +1,69 @@
|
|||
from pathlib import Path
|
||||
import shutil
|
||||
|
||||
|
||||
class ScreenshotManager:
|
||||
def __init__(
|
||||
self,
|
||||
|
||||
# Where PICO-8 saves screenshots
|
||||
source: Path,
|
||||
|
||||
# How PICO-8 names screenshots.
|
||||
# Example: "celeste_*.png"
|
||||
pattern: str,
|
||||
|
||||
# Where we want to move screenshots.
|
||||
target: Path
|
||||
):
|
||||
self.source = source
|
||||
self.pattern = pattern
|
||||
self.target = target
|
||||
self.target.mkdir(
|
||||
parents = True,
|
||||
exist_ok = True
|
||||
)
|
||||
|
||||
|
||||
|
||||
def clean(self):
|
||||
shots = self.source.glob(self.pattern)
|
||||
for s in shots:
|
||||
s.unlink()
|
||||
return self
|
||||
|
||||
|
||||
|
||||
def move(self, number: int | None = None, overwrite = False):
|
||||
shots = self.source.glob(self.pattern)
|
||||
|
||||
if number == None:
|
||||
|
||||
# Auto-select new directory number.
|
||||
# Chooses next highest int directory name
|
||||
number = 0
|
||||
for f in self.target.iterdir():
|
||||
try:
|
||||
number = max(
|
||||
int(f.name),
|
||||
number
|
||||
)
|
||||
except ValueError:
|
||||
continue
|
||||
number += 1
|
||||
|
||||
else:
|
||||
target = self.target / str(number)
|
||||
|
||||
if target.exists():
|
||||
if not overwrite:
|
||||
raise Exception(f"Target \"{target}\" exists!")
|
||||
else:
|
||||
print(f"Target \"{target}\" exists, removing.")
|
||||
shutil.rmtree(target)
|
||||
|
||||
target.mkdir(parents = True)
|
||||
|
||||
for s in shots:
|
||||
s.rename(target / s.name)
|
||||
return self
|
|
@ -47,14 +47,6 @@ plots = {
|
|||
|
||||
if __name__ == "__main__":
|
||||
|
||||
if plots["prediction"]:
|
||||
print("Making prediction plots...")
|
||||
with Pool(5) as p:
|
||||
p.map(
|
||||
plot_pred,
|
||||
list((m / "model_archive").iterdir())
|
||||
)
|
||||
|
||||
if plots["best"]:
|
||||
print("Making best-action plots...")
|
||||
with Pool(5) as p:
|
||||
|
@ -63,6 +55,14 @@ if __name__ == "__main__":
|
|||
list((m / "model_archive").iterdir())
|
||||
)
|
||||
|
||||
if plots["prediction"]:
|
||||
print("Making prediction plots...")
|
||||
with Pool(5) as p:
|
||||
p.map(
|
||||
plot_pred,
|
||||
list((m / "model_archive").iterdir())
|
||||
)
|
||||
|
||||
if plots["actual"]:
|
||||
print("Making actual plots...")
|
||||
with Pool(5) as p:
|
||||
|
|
|
@ -30,6 +30,16 @@ k_jump=4
|
|||
k_dash=5
|
||||
|
||||
|
||||
-- Set to false while training or running the model.
|
||||
-- Set to true to play the game manually with debug print.
|
||||
-- (good for finding coordinates of checkpoints)
|
||||
--
|
||||
-- If true, disables most hack features:
|
||||
-- - screenshots at every frame
|
||||
-- - frame skipping
|
||||
-- - waiting for input
|
||||
hack_human_mode = false
|
||||
|
||||
-- If true, disable screensake
|
||||
hack_no_shake = true
|
||||
|
||||
|
@ -1209,6 +1219,10 @@ end
|
|||
-- _update60 does 60 fps
|
||||
-- default for celeste is 30.
|
||||
function _update()
|
||||
if hack_human_mode then
|
||||
old_update()
|
||||
return
|
||||
end
|
||||
|
||||
-- Run at full speed until ready
|
||||
if not hack_ready then
|
||||
|
@ -1304,7 +1318,10 @@ end
|
|||
-- Called at the same rate as _update,
|
||||
-- but not necessarily at the same time.
|
||||
function _draw()
|
||||
--old_draw()
|
||||
if hack_human_mode then
|
||||
old_draw()
|
||||
return
|
||||
end
|
||||
end
|
||||
|
||||
function old_update()
|
||||
|
|
Reference in New Issue