Mark
/
celeste-ai
Archived
1
0
Fork 0

Compare commits

...

2 Commits

Author SHA1 Message Date
Mark 3d25d63efe
Plotter cleanup 2023-02-26 15:26:45 -08:00
Mark 05d745cc07
Cleaned up ffmpeg.sh 2023-02-26 15:12:56 -08:00
4 changed files with 61 additions and 153 deletions

View File

@ -1,4 +1,3 @@
from .plot_actual_reward import actual_reward
from .plot_predicted_reward import predicted_reward
from .plot_best_action import best_action

View File

@ -1,81 +0,0 @@
import torch
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
from multiprocessing import Pool
# All of the following are required to load
# a pickled model.
from celeste_ai.celeste import Celeste
from celeste_ai.network import DQN
from celeste_ai.network import Transition
def actual_reward(
model_file: Path,
target_point: tuple[int, int],
out_filename: Path,
*,
device = torch.device("cpu")
):
if not model_file.is_file():
raise Exception(f"Bad model file {model_file}")
out_filename.parent.mkdir(exist_ok = True, parents = True)
checkpoint = torch.load(
model_file,
map_location = device
)
memory = checkpoint["memory"]
r = np.zeros((128, 128, 8), dtype=np.float32)
for m in memory:
x, y, x_target, y_target = list(m.state[0])
action = m.action[0].item()
x = int(x.item())
y = int(y.item())
x_target = int(x_target.item())
y_target = int(y_target.item())
# Only plot memory related to this point
if (x_target, y_target) != target_point:
continue
if m.reward[0].item() == 1:
r[y][x][action] += 1
else:
r[y][x][action] -= 1
fig, axs = plt.subplots(2, 4, figsize = (20, 10))
for a in range(len(axs.ravel())):
ax = axs.ravel()[a]
ax.set(
adjustable = "box",
aspect = "equal",
title = Celeste.action_space[a]
)
plot = ax.pcolor(
r[:,:,a],
cmap = "seismic_r",
vmin = -10,
vmax = 10
)
# Draw target point on plot
ax.plot(
target_point[0],
target_point[1],
"k."
)
ax.invert_yaxis()
fig.colorbar(plot)
fig.savefig(out_filename)
plt.close()

View File

@ -1,65 +1,90 @@
#!/bin/bash
# Where screenshots are saved
# Where screenshots are saved.
# SC_ROOT/SC_DIR should contain episode screenshot directories
SC_ROOT="model_data/current"
# WILL BE DELETED
OUTPUT_DIR="model_data/video_output"
SC_DIR="screenshots"
# To make with fade in and out:
# ffmpeg -framerate 30 -i %03d.png -vf "scale=1024x1024:flags=neighbor,fade=in:0:45,fade=out:1040:45" out.webm
# Select a temporary working directory
# if false, uses ramdisk.
# set to true if ramdisk overflows.
if false; then
OUTPUT_DIR="model_data/video_output"
render_dir () {
# This directory will be deleted.
# Make sure it doesn't already exist.
if [ -e "$OUTPUT_DIR" ]; then
echo "$OUTPUT_DIR exists, exiting. Please delete it manually."
exit 1
fi
mkdir -p $OUTPUT_DIR
else
OUTPUT_DIR=$(mktemp -d)
fi
# Usage:
# render_episode <src_dir> <output_name>
#
# Turns a directory of frame screenshots into a video.
# Applies upscaling. We do it early, because upscaling
# after encoding will exaggerate artifacts.
render_episode () {
ffmpeg \
-y \
-loglevel quiet \
-framerate 30 \
-i $1/hackcel_%003d.png \
-i "$1/hackcel_%003d.png" \
-c:v libx264 \
-pix_fmt yuv420p \
$OUTPUT_DIR/${1##*/}.mp4
-crf 20 \
-preset slow \
-tune animation \
-vf "scale=1024x1024:flags=neighbor" \
"$2.mp4"
}
# Todo: error out if exists
mkdir -p $OUTPUT_DIR
echo "Making episode files..."
for D in $SC_ROOT/screenshots/*; do
for D in "$SC_ROOT/$SC_DIR"/*; do
if [ -d "${D}" ]; then
render_dir $D
render_episode "$D" "$OUTPUT_DIR/${D##*/}"
fi
done
echo "Done."
# Generate video for each run
for f in $OUTPUT_DIR/*.mp4; do
echo file \'$f\' >> video_merge_list
echo "Merging..."
for f in "$OUTPUT_DIR"/*.mp4; do
echo file \'$f\' >> "$OUTPUT_DIR/video_merge_list"
done
# Merge videos
ffmpeg \
-loglevel error -stats -y \
-f concat \
-safe 0 \
-i video_merge_list \
-vf "scale=1024x1024:flags=neighbor" \
$SC_ROOT/1x.mp4
-i "$OUTPUT_DIR/video_merge_list" \
"$SC_ROOT/1x.mp4"
echo ""
echo "Making accelerated video..."
rm video_merge_list
# Make accelerated video
ffmpeg \
-loglevel error -stats -y \
-i $SC_ROOT/1x.mp4 \
-i "$SC_ROOT/1x.mp4" \
-framerate 60 \
-filter:v "setpts=0.125*PTS" \
$SC_ROOT/8x.mp4
"$SC_ROOT/8x.mp4"
echo "Cleaning up..."
echo "Cleaning up...."
rm -dr $OUTPUT_DIR

View File

@ -5,10 +5,9 @@ import celeste_ai.plotting as plotting
from multiprocessing import Pool
m = Path("model_data/current")
# Make "predicted reward" plots
def plot_pred(src_model):
plotting.predicted_reward(
src_model,
@ -17,7 +16,6 @@ def plot_pred(src_model):
device = torch.device("cpu")
)
# Make "best action" plots
def plot_best(src_model):
plotting.best_action(
src_model,
@ -26,47 +24,14 @@ def plot_best(src_model):
device = torch.device("cpu")
)
# Make "actual reward" plots
def plot_act(src_model):
plotting.actual_reward(
src_model,
(60, 80),
m / f"plots/actual/{src_model.stem}.png",
device = torch.device("cpu")
)
# Which plots should we make?
plots = {
"prediction": True,
"actual": False,
"best": True
}
if __name__ == "__main__":
if plots["best"]:
print("Making best-action plots...")
with Pool(5) as p:
p.map(
plot_best,
list((m / "model_archive").iterdir())
)
if plots["prediction"]:
print("Making prediction plots...")
with Pool(5) as p:
p.map(
plot_pred,
list((m / "model_archive").iterdir())
)
if plots["actual"]:
print("Making actual plots...")
with Pool(5) as p:
p.map(
plot_act,
list((m / "model_archive").iterdir())
)
for k, v in {
#"prediction": plot_pred,
"best_action": plot_best,
}.items():
print(f"Making {k} plots...")
with Pool(5) as p:
p.map(
v,
list((m / "model_archive").iterdir())
)