Added best-action plot
parent
bae70e0cfa
commit
c9e04dcd41
|
@ -1,2 +1,4 @@
|
|||
from .plot_actual_reward import actual_reward
|
||||
from .plot_predicted_reward import predicted_reward
|
||||
from .plot_best_action import best_action
|
||||
|
||||
|
|
|
@ -0,0 +1,105 @@
|
|||
import torch
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# All of the following are required to load
|
||||
# a pickled model.
|
||||
from celeste_ai.celeste import Celeste
|
||||
from celeste_ai.network import DQN
|
||||
from celeste_ai.network import Transition
|
||||
|
||||
|
||||
def best_action(
|
||||
model_file: Path,
|
||||
out_filename: Path,
|
||||
*,
|
||||
device = torch.device("cpu")
|
||||
):
|
||||
if not model_file.is_file():
|
||||
raise Exception(f"Bad model file {model_file}")
|
||||
out_filename.parent.mkdir(exist_ok = True, parents = True)
|
||||
|
||||
# Create and load model
|
||||
policy_net = DQN(
|
||||
len(Celeste.state_number_map),
|
||||
len(Celeste.action_space)
|
||||
).to(device)
|
||||
checkpoint = torch.load(
|
||||
model_file,
|
||||
map_location = device
|
||||
)
|
||||
policy_net.load_state_dict(checkpoint["policy_state_dict"])
|
||||
|
||||
|
||||
|
||||
# Compute preditions
|
||||
p = np.zeros((128, 128, 2), dtype=np.float32)
|
||||
with torch.no_grad():
|
||||
for r in range(len(p)):
|
||||
for c in range(len(p[r])):
|
||||
x = c / 128.0
|
||||
y = r / 128.0
|
||||
|
||||
k = np.asarray(policy_net(
|
||||
torch.tensor(
|
||||
[x, y, 0],
|
||||
dtype = torch.float32,
|
||||
device = device
|
||||
).unsqueeze(0)
|
||||
)[0])
|
||||
p[r][c][0] = np.argmax(k)
|
||||
|
||||
k = np.asarray(policy_net(
|
||||
torch.tensor(
|
||||
[x, y, 1],
|
||||
dtype = torch.float32,
|
||||
device = device
|
||||
).unsqueeze(0)
|
||||
)[0])
|
||||
p[r][c][1] = np.argmax(k)
|
||||
|
||||
|
||||
# Plot predictions
|
||||
fig, axs = plt.subplots(1, 2, figsize = (10, 10))
|
||||
ax = axs[0]
|
||||
ax.set(
|
||||
adjustable = "box",
|
||||
aspect = "equal",
|
||||
title = "Best Action"
|
||||
)
|
||||
|
||||
plot = ax.pcolor(
|
||||
p[:,:,0],
|
||||
cmap = "Set1",
|
||||
vmin = 0,
|
||||
vmax = 8
|
||||
)
|
||||
ax.invert_yaxis()
|
||||
fig.colorbar(plot)
|
||||
|
||||
ax = axs[1]
|
||||
ax.set(
|
||||
adjustable = "box",
|
||||
aspect = "equal",
|
||||
title = "Best Action"
|
||||
)
|
||||
|
||||
plot = ax.pcolor(
|
||||
p[:,:,0],
|
||||
cmap = "Set1",
|
||||
vmin = 0,
|
||||
vmax = 8
|
||||
)
|
||||
|
||||
ax.invert_yaxis()
|
||||
fig.colorbar(plot)
|
||||
|
||||
fig.savefig(out_filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue