Cleanup
parent
36c5fcac7c
commit
0e874bf810
|
@ -9,6 +9,7 @@ import torch
|
||||||
from celeste import Celeste
|
from celeste import Celeste
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
# Where to read/write model data.
|
# Where to read/write model data.
|
||||||
model_data_root = Path("model_data")
|
model_data_root = Path("model_data")
|
||||||
|
|
||||||
|
@ -62,7 +63,6 @@ TAU = 0.005
|
||||||
GAMMA = 0.99
|
GAMMA = 0.99
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Outline our network
|
# Outline our network
|
||||||
class DQN(torch.nn.Module):
|
class DQN(torch.nn.Module):
|
||||||
def __init__(self, n_observations: int, n_actions: int):
|
def __init__(self, n_observations: int, n_actions: int):
|
||||||
|
@ -92,12 +92,22 @@ class DQN(torch.nn.Module):
|
||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.layers(x)
|
return self.layers(x)
|
||||||
|
|
||||||
|
Transition = namedtuple(
|
||||||
|
"Transition",
|
||||||
|
(
|
||||||
|
"state",
|
||||||
|
"action",
|
||||||
|
"next_state",
|
||||||
|
"reward"
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
steps_done = 0
|
steps_done = 0
|
||||||
|
|
||||||
num_episodes = 100
|
num_episodes = 100
|
||||||
|
episode_number = 0
|
||||||
|
archive_interval = 10
|
||||||
|
|
||||||
# Create replay memory.
|
# Create replay memory.
|
||||||
#
|
#
|
||||||
|
@ -107,7 +117,6 @@ num_episodes = 100
|
||||||
# element if maxlen is exceeded.
|
# element if maxlen is exceeded.
|
||||||
memory = deque([], maxlen=100_000)
|
memory = deque([], maxlen=100_000)
|
||||||
|
|
||||||
|
|
||||||
policy_net = DQN(
|
policy_net = DQN(
|
||||||
n_observations,
|
n_observations,
|
||||||
n_actions
|
n_actions
|
||||||
|
@ -127,6 +136,17 @@ optimizer = torch.optim.AdamW(
|
||||||
amsgrad = True
|
amsgrad = True
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
if model_save_path.is_file():
|
||||||
|
# Load model if one exists
|
||||||
|
checkpoint = torch.load(model_save_path)
|
||||||
|
policy_net.load_state_dict(checkpoint["policy_state_dict"])
|
||||||
|
target_net.load_state_dict(checkpoint["target_state_dict"])
|
||||||
|
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
|
||||||
|
memory = checkpoint["memory"]
|
||||||
|
episode_number = checkpoint["episode_number"] + 1
|
||||||
|
steps_done = checkpoint["steps_done"]
|
||||||
|
|
||||||
def select_action(state, steps_done):
|
def select_action(state, steps_done):
|
||||||
"""
|
"""
|
||||||
Select an action using an epsilon-greedy policy.
|
Select an action using an epsilon-greedy policy.
|
||||||
|
@ -160,24 +180,6 @@ def select_action(state, steps_done):
|
||||||
return random.randint( 0, n_actions-1 )
|
return random.randint( 0, n_actions-1 )
|
||||||
|
|
||||||
|
|
||||||
last_state = None
|
|
||||||
|
|
||||||
|
|
||||||
Transition = namedtuple(
|
|
||||||
"Transition",
|
|
||||||
(
|
|
||||||
"state",
|
|
||||||
"action",
|
|
||||||
"next_state",
|
|
||||||
"reward"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def optimize_model():
|
def optimize_model():
|
||||||
|
|
||||||
if len(memory) < BATCH_SIZE:
|
if len(memory) < BATCH_SIZE:
|
||||||
|
@ -313,19 +315,6 @@ def optimize_model():
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
|
|
||||||
|
|
||||||
episode_number = 0
|
|
||||||
|
|
||||||
|
|
||||||
if model_save_path.is_file():
|
|
||||||
# Load model if one exists
|
|
||||||
checkpoint = torch.load(model_save_path)
|
|
||||||
policy_net.load_state_dict(checkpoint["policy_state_dict"])
|
|
||||||
target_net.load_state_dict(checkpoint["target_state_dict"])
|
|
||||||
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
|
|
||||||
memory = checkpoint["memory"]
|
|
||||||
episode_number = checkpoint["episode_number"] + 1
|
|
||||||
steps_done = checkpoint["steps_done"]
|
|
||||||
|
|
||||||
|
|
||||||
def on_state_before(celeste):
|
def on_state_before(celeste):
|
||||||
global steps_done
|
global steps_done
|
||||||
|
@ -363,9 +352,6 @@ def on_state_before(celeste):
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
image_interval = 10
|
|
||||||
|
|
||||||
|
|
||||||
def on_state_after(celeste, before_out):
|
def on_state_after(celeste, before_out):
|
||||||
global episode_number
|
global episode_number
|
||||||
global image_count
|
global image_count
|
||||||
|
@ -474,7 +460,7 @@ def on_state_after(celeste, before_out):
|
||||||
s.rename(target / s.name)
|
s.rename(target / s.name)
|
||||||
|
|
||||||
# Save a prediction graph
|
# Save a prediction graph
|
||||||
if episode_number % image_interval == 0:
|
if episode_number % archive_interval == 0:
|
||||||
torch.save({
|
torch.save({
|
||||||
"policy_state_dict": policy_net.state_dict(),
|
"policy_state_dict": policy_net.state_dict(),
|
||||||
"target_state_dict": target_net.state_dict(),
|
"target_state_dict": target_net.state_dict(),
|
||||||
|
@ -490,7 +476,7 @@ def on_state_after(celeste, before_out):
|
||||||
celeste.reset()
|
celeste.reset()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
c = Celeste()
|
c = Celeste()
|
||||||
|
|
||||||
c.update_loop(
|
c.update_loop(
|
||||||
|
|
|
@ -1,14 +1,15 @@
|
||||||
from pathlib import Path
|
|
||||||
import torch
|
import torch
|
||||||
from celeste import Celeste
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from pathlib import Path
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from collections import namedtuple
|
from multiprocessing import Pool
|
||||||
|
|
||||||
|
from celeste import Celeste
|
||||||
|
from main import DQN
|
||||||
|
from main import Transition
|
||||||
|
|
||||||
compute_device = torch.device(
|
# Use cpu, the script is faster in parallel.
|
||||||
"cuda" if torch.cuda.is_available() else "cpu"
|
compute_device = torch.device("cpu")
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
# Celeste env properties
|
# Celeste env properties
|
||||||
|
@ -16,35 +17,10 @@ n_observations = len(Celeste.state_number_map)
|
||||||
n_actions = len(Celeste.action_space)
|
n_actions = len(Celeste.action_space)
|
||||||
|
|
||||||
|
|
||||||
# Outline our network
|
out_dir = Path("out/plots")
|
||||||
class DQN(torch.nn.Module):
|
out_dir.mkdir(parents = True, exist_ok = True)
|
||||||
def __init__(self, n_observations: int, n_actions: int):
|
|
||||||
super(DQN, self).__init__()
|
|
||||||
|
|
||||||
self.layers = torch.nn.Sequential(
|
|
||||||
torch.nn.Linear(n_observations, 128),
|
|
||||||
torch.nn.ReLU(),
|
|
||||||
|
|
||||||
torch.nn.Linear(128, 128),
|
|
||||||
torch.nn.ReLU(),
|
|
||||||
|
|
||||||
torch.nn.Linear(128, 128),
|
|
||||||
torch.nn.ReLU(),
|
|
||||||
|
|
||||||
torch.torch.nn.Linear(128, n_actions)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Can be called with one input, or with a batch.
|
|
||||||
#
|
|
||||||
# Returns tensor(
|
|
||||||
# [ Q(s, left), Q(s, right) ], ...
|
|
||||||
# )
|
|
||||||
#
|
|
||||||
# Recall that Q(s, a) is the (expected) return of taking
|
|
||||||
# action `a` at state `s`
|
|
||||||
def forward(self, x):
|
|
||||||
return self.layers(x)
|
|
||||||
|
|
||||||
|
src_dir = Path("model_data/model_archive")
|
||||||
|
|
||||||
policy_net = DQN(
|
policy_net = DQN(
|
||||||
n_observations,
|
n_observations,
|
||||||
|
@ -62,18 +38,6 @@ optimizer = torch.optim.AdamW(
|
||||||
amsgrad = True
|
amsgrad = True
|
||||||
)
|
)
|
||||||
|
|
||||||
Transition = namedtuple(
|
|
||||||
"Transition",
|
|
||||||
(
|
|
||||||
"state",
|
|
||||||
"action",
|
|
||||||
"next_state",
|
|
||||||
"reward"
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def makeplt(i, net):
|
def makeplt(i, net):
|
||||||
p = np.zeros((128, 128), dtype=np.float32)
|
p = np.zeros((128, 128), dtype=np.float32)
|
||||||
|
@ -93,10 +57,9 @@ def makeplt(i, net):
|
||||||
return p
|
return p
|
||||||
|
|
||||||
|
|
||||||
for i in Path("out/model_images").iterdir():
|
|
||||||
|
|
||||||
|
def plot(src):
|
||||||
checkpoint = torch.load(i)
|
checkpoint = torch.load(src)
|
||||||
policy_net.load_state_dict(checkpoint["policy_state_dict"])
|
policy_net.load_state_dict(checkpoint["policy_state_dict"])
|
||||||
|
|
||||||
|
|
||||||
|
@ -107,13 +70,20 @@ for i in Path("out/model_images").iterdir():
|
||||||
ax.set(adjustable="box", aspect="equal")
|
ax.set(adjustable="box", aspect="equal")
|
||||||
plot = ax.pcolor(
|
plot = ax.pcolor(
|
||||||
makeplt(a, policy_net),
|
makeplt(a, policy_net),
|
||||||
cmap = "Greens_r",
|
cmap = "Greens",
|
||||||
vmin = 0,
|
vmin = 0,
|
||||||
vmax = 20
|
|
||||||
)
|
)
|
||||||
ax.set_title(Celeste.action_space[a])
|
ax.set_title(Celeste.action_space[a])
|
||||||
ax.invert_yaxis()
|
ax.invert_yaxis()
|
||||||
fig.colorbar(plot)
|
fig.colorbar(plot)
|
||||||
print(i)
|
print(src)
|
||||||
fig.savefig(f"out/{i.stem}.png")
|
fig.savefig(out_dir / f"{src.stem}.png")
|
||||||
plt.close()
|
plt.close()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
with Pool(5) as p:
|
||||||
|
p.map(plot, list(src_dir.iterdir()))
|
||||||
|
|
||||||
|
|
||||||
|
|
Reference in New Issue