QMK/keyboards/betalupi_voyager/matrix.c

241 lines
6.4 KiB
C

/* Copyright 2020 ZSA Technology Labs, Inc <@zsa>
* Copyright 2020 Jack Humbert <jack.humb@gmail.com>
* Copyright 2020 Christopher Courtney, aka Drashna Jael're (@drashna) <drashna@live.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "betalupi_voyager.h"
#include "is31fl3731.h"
#include "i2c_master.h"
extern matrix_row_t matrix[MATRIX_ROWS]; // debounced values
extern matrix_row_t raw_matrix[MATRIX_ROWS]; // raw values
static matrix_row_t raw_matrix_right[MATRIX_COLS];
#define ROWS_PER_HAND (MATRIX_ROWS / 2)
#ifndef VOYAGER_I2C_TIMEOUT
# define VOYAGER_I2C_TIMEOUT 100
#endif
extern bool mcp23018_leds[2];
extern bool is_launching;
bool mcp23018_initd = false;
// extern bool IS31FL3731_initd;
static uint8_t mcp23018_reset_loop;
// static uint8_t is31fl3731_reset_loop;
uint8_t mcp23018_tx[3];
uint8_t mcp23018_rx[1];
void mcp23018_init(void) {
i2c_init();
mcp23018_tx[0] = 0x00; // IODIRA
mcp23018_tx[1] = 0b00000000; // A is output
mcp23018_tx[2] = 0b00111111; // B is inputs
if (MSG_OK == i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, VOYAGER_I2C_TIMEOUT)) {
mcp23018_tx[0] = 0x0C; // GPPUA
mcp23018_tx[1] = 0b10000000; // A is not pulled-up
mcp23018_tx[2] = 0b11111111; // B is pulled-up
wait_ms(5);
if (MSG_OK == i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, VOYAGER_I2C_TIMEOUT)) {
wait_ms(5);
mcp23018_initd = is_launching = true;
}
}
}
bool io_expander_ready(void) {
uint8_t tx[1] = {0x13};
if (MSG_OK == i2c_readReg(MCP23018_DEFAULT_ADDRESS << 1, tx[0], &tx[0], 1, VOYAGER_I2C_TIMEOUT)) {
return true;
}
return false;
}
void matrix_init_custom(void) {
// outputs
setPinOutput(B10);
setPinOutput(B11);
setPinOutput(B12);
setPinOutput(B13);
setPinOutput(B14);
setPinOutput(B15);
// inputs
setPinInputLow(A0);
setPinInputLow(A1);
setPinInputLow(A2);
setPinInputLow(A3);
setPinInputLow(A6);
setPinInputLow(A7);
setPinInputLow(B0);
mcp23018_init();
}
bool matrix_scan_custom(matrix_row_t current_matrix[]) {
bool changed = false;
// Attempt to reset the mcp23018 if it's not initialized
if (!mcp23018_initd) {
if (++mcp23018_reset_loop == 0) {
// Since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans. This will be approx bit more frequent than once per second.
if (io_expander_ready()) {
// If we managed to initialize the mcp23018 - we need to reinitialize the matrix / layer state. During an electric discharge the i2c peripherals might be in a weird state. Giving a delay and resetting the MCU allows to recover from this.
wait_ms(200);
mcu_reset();
}
}
}
// Scanning left and right side of the keyboard for key presses.
// Left side is scanned by reading the gpio pins directly, right side is scanned by reading the mcp23018 registers.
matrix_row_t data = 0;
for (uint8_t row = 0; row <= ROWS_PER_HAND; row++) {
// strobe row
switch (row) {
case 0:
writePinHigh(B10);
break;
case 1:
writePinHigh(B11);
break;
case 2:
writePinHigh(B12);
break;
case 3:
writePinHigh(B13);
break;
case 4:
writePinHigh(B14);
break;
case 5:
writePinHigh(B15);
break;
case 6:
break; // Left hand has 6 rows
}
// Selecting the row on the right side of the keyboard.
if (mcp23018_initd) {
// select row
mcp23018_tx[0] = 0x12; // GPIOA
mcp23018_tx[1] = (0b01111111 & ~(1 << (row))) | ((uint8_t)!mcp23018_leds[2] << 7); // activate row
mcp23018_tx[2] = ((uint8_t)!mcp23018_leds[1] << 6) | ((uint8_t)!mcp23018_leds[0] << 7); // activate row
if (MSG_OK != i2c_transmit(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx, 3, VOYAGER_I2C_TIMEOUT)) {
mcp23018_initd = false;
}
}
// Reading the left side of the keyboard.
if (row < ROWS_PER_HAND) {
// i2c comm incur enough wait time
if (!mcp23018_initd) {
// need wait to settle pin state
matrix_io_delay();
}
// read col data
data = ((readPin(A0) << 0) | (readPin(A1) << 1) | (readPin(A2) << 2) | (readPin(A3) << 3) | (readPin(A6) << 4) | (readPin(A7) << 5) | (readPin(B0) << 6));
// unstrobe row
switch (row) {
case 0:
writePinLow(B10);
break;
case 1:
writePinLow(B11);
break;
case 2:
writePinLow(B12);
break;
case 3:
writePinLow(B13);
break;
case 4:
writePinLow(B14);
break;
case 5:
writePinLow(B15);
break;
case 6:
break;
}
if (current_matrix[row] != data) {
current_matrix[row] = data;
changed = true;
}
}
// Reading the right side of the keyboard.
if (mcp23018_initd) {
for (uint16_t i = 0; i < IO_EXPANDER_OP_DELAY; i++) {
__asm__("nop");
}
mcp23018_tx[0] = 0x13; // GPIOB
if (MSG_OK != i2c_readReg(MCP23018_DEFAULT_ADDRESS << 1, mcp23018_tx[0], &mcp23018_rx[0], 1, VOYAGER_I2C_TIMEOUT)) {
mcp23018_initd = false;
}
data = ~(mcp23018_rx[0] & 0b00111111);
for (uint16_t i = 0; i < IO_EXPANDER_OP_DELAY; i++) {
__asm__("nop");
}
} else {
data = 0;
}
if (raw_matrix_right[row] != data) {
raw_matrix_right[row] = data;
changed = true;
}
}
for (uint8_t row = 0; row < ROWS_PER_HAND; row++) {
current_matrix[11 - row] = 0;
for (uint8_t col = 0; col < MATRIX_COLS; col++) {
current_matrix[11 - row] |= ((raw_matrix_right[6 - col] & (1 << row) ? 1 : 0) << col);
}
}
return changed;
}
// DO NOT REMOVE
// Needed for proper wake/sleep
void matrix_power_up(void) {
bool temp_launching = is_launching;
matrix_init_custom();
is_launching = temp_launching;
if (!temp_launching) {
STATUS_LED_1(false);
STATUS_LED_2(false);
STATUS_LED_3(false);
STATUS_LED_4(false);
}
// initialize matrix state: all keys off
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
}
}
bool is_transport_connected(void) {
return mcp23018_initd;
}