
Advanced 2 https://betalupi.com/handouts

Lambda Calculus
Prepared by Mark on May 9, 2025

Instructor’s Handout
This file contains solutions and notes.
Compile with the “nosolutions” flag before distributing.
Click [here] for the latest version of this handout.

Beware of the Turing tar pit, in which everything is
possible but nothing of interest is easy.

Alan Perlis, Epigrams of Programming, #54

Note for Instructors

Context & Computability: (or, why do we need lambda calculus?)
From Peter Selinger’s Lecture Notes on Lambda Calculus

In the 1930s, several people were interested in the question: what does it mean for a function
f : N 7→ N to be computable? An informal definition of computability is that there should be a
pencil-and-paper method allowing a trained person to calculate f(n), for any given n. The
concept of a pencil-and-paper method is not so easy to formalize. Three different researchers
attempted to do so, resulting in the following definitions of computability:

• Turing defined an idealized computer we now call a Turing machine, and postulated that
a function is “computable” if and only if it can be computed by such a machine.

• Gödel defined the class of general recursive functions as the smallest set of functions
containing all the constant functions, the successor function, and closed under certain
operations (such as compositions and recursion). He postulated that a function is
“computable” if and only if it is general recursive.

• Church defined an idealized programming language called the lambda calculus, and
postulated that a function is “computable” if and only if it can be written as a lambda
term.

It was proved by Church, Kleene, Rosser, and Turing that all three computational models were
equivalent to each other — each model defines the same class of computable functions.
Whether or not they are equivalent to the “intuitive” notion of computability is a question
that cannot be answered, because there is no formal definition of “intuitive computability.”
The assertion that they are in fact equivalent to intuitive computility is known as the
Church-Turing thesis.
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Part 1: Introduction
Lambda calculus is a model of computation, much like the Turing machine. As we’re about to see, it
works in a fundamentally different way, which has a few practical applications we’ll discuss at the
end of class.
A lambda function starts with a lambda (λ), followed by the names of any inputs used in the
expression, followed by the function’s output.
For example, λx.x+ 3 is the function f(x) = x+ 3 written in lambda notation.

Let’s disect λx.x+ 3 piece by piece:
• “λ” tells us that this is the beginning of an expression.
λ here doesn’t have a special value or definition;
it’s just a symbol that tells us “this is the start of a function.”

• “λx” says that the variable x is “bound” to the function (i.e, it is used for input).
Whenever we see x in the function’s output, we’ll replace it with the input of the same name.
This is a lot like normal function notation: In f(x) = x+ 3, (x) is “bound” to f , and we replace
every x we see with our input when evaluating.

• The dot tells us that what follows is the output of this expression.
This is much like = in our usual function notation:
The symbols after = in f(x) = x+ 3 tell us how to compute the output of this function.

Problem 1:
Rewrite the following functions using this notation:

• f(x) = 7x+ 4
• f(x) = x2 + 2x+ 1
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To evaluate λx.x+ 3, we need to input a value:

(λx.x+ 3) 5

This is very similar to the usual way we call functions: we usually write f(5).
Above, we define our function f “in-line” using lambda notation,
and we omit the parentheses around 5 for the sake of simpler notation.
We evaluate this by removing the “λ” prefix and substituting 3 for x wheverever it appears:

(λx.x+ 3) 5 = 5 + 3 = 8

Problem 2:
Evaluate the following:

• (λx.2x+ 1) 4

• (λx.x2 + 2x+ 1) 3

• (λx.(λy.9y)x+ 3) 2
Hint: This function has a function inside, but the evaluation process doesn’t change.
Replace all x with 2 and evaluate again.

As we saw above, we denote function application by simply putting functions next to their inputs.
If we want to apply f to 5, we write “f 5”, without any parentheses around the function’s argument.

You may have noticed that we’ve been using arithmetic in the last few problems. This isn’t fully
correct: addition is not defined in lambda calculus. In fact, nothing is defined: not even numbers!
In lambda calculus, we have only one kind of object: the function. The only action we have is
function application, which works by just like the examples above.
Don’t worry if this sounds confusing, we’ll see a few examples soon.
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Definition 3:
The first “pure” functions we’ll define are I and M :

• I = λx.x
• M = λx.xx

Both I and M take one function (x) as an input.
I does nothing, it just returns x.
M is a bit more interesting: it applies the function x on a copy of itself.

Also, note that I and M don’t have a meaning on their own. They are not formal functions.
Rather, they are abbreviations that say “write λx.x whenever you see I.”

Problem 4:
Reduce the following expressions.
Hint: Of course, your final result will be a function.
Functions are the only objects we have!

• I I

• M I

• (I I) I

•

(
λa.(a (a a))

)
I

•

(
(λa.(λb.a)) M

)
I

Example Solution

Solution for (I I):
Recall that I = λx.x. First, we rewrite the left I to get (λx.x) I.
Applying this function by replacing x with I, we get I:

I I = (λx.x) I = I

In lambda calculus, functions are left-associative:
(f g h) means ((f g) h), not (f (g h))
As usual, we use parentheses to group terms if we want to override this order: (f (g h)) 6= ((f g) h)
In this handout, all types of parentheses ( (), [ ], etc ) are equivalent.

Problem 5:
Rewrite the following expressions with as few parentheses as possible, without changing their
meaning or structure. Remember that lambda calculus is left-associative.

• (λx.(λy.λz.((xz)(yz))))

• ((ab)(cd))((ef)(gh))

• (λx.((λy.(yx))(λv.v)z)u)(λw.w)

Solution

(λx.((λy.(yx))(λv.v)z)u)(λw.w) =⇒ (λx.(λy.yx)(λv.v) z u)λw.w

It’s important that a function’s output (everything after the dot) will continue until we hit a
close-paren. This is why we need the parentheses in the above example.
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Definition 6: Equivalence
We say two functions are equivalent if they differ only by the names of their variables:
I = λa.a = λb.b = λ♥.♥ = ...

Note for Instructors

The idea behind this is very similar to the idea behind “equivalent groups” in group theory:
we do not care which symbols a certain group or function uses, we care about their structure.
If we have two groups with different elements with the same multiplication table, we look at
them as identical groups. The same is true of lambda functions: two lambda functions with
different variable names that behave in the same way are identical.

Definition 7:
Let K = λa.(λb.a). We’ll call K the “constant function function.”

Problem 8:
That’s not a typo. Why does this name make sense?
Hint: What is K x?

Solution

Kx = λa.x, which is a constant function that always outputs x.
Given an argument, K returns a constant function with that value.

Problem 9:
Show that associativity matters by evaluating

(
(M K) I

)
and

(
M (K I)

)
.

What would M K I reduce to?

Solution(
(M K) I

)
= (K K) I = (λa.K) I = K(

M (K I)
)
= M (λa.I) = (λa.I)(λa.I) = I
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Currying:
In lambda calculus, functions are only allowed to take one argument.
If we want multivariable functions, we’ll have to emulate them through currying1.
The idea behind currying is fairly simple: we make functions that return functions.
We’ve already seen this on the previous page: K takes an input x and uses it to construct a constant
function. You can think of K as a “factory” that constructs functions using the input we provide.

Problem 10:
Let C = λf.

[
λg.

(
λx.[ f(g(x)) ]

)]
. For now, we’ll call it the “composer.”

Note: We could also call C the “right-associator.” Why?

C has three “layers” of curry: it makes a function (λg) that makes another function (λx).
If we look closely, we’ll find that C pretends to take three arguments.
What does C do? Evaluate (C a b x) for arbitrary expressions a, b, and x.
Hint: Evaluate (C a) first. Remember, function application is left-associative.

Problem 11:
Using the definition of C above, evaluate C M I ⋆
Then, evaluate C I M I
Note: ⋆ represents an arbitrary expression. Treat it like an unknown variable.

As we saw above, currying allows us to create multivariable functions by nesting single-variable
functions. You may have notice that curried expressions can get very long. We’ll use a bit of
shorthand to make them more palatable: If we have an expression with repeated function definitions,
we’ll combine their arguments under one λ.
For example, A = λf.[λa.f(f(a))] will become A = λfa.f(f(a))

Problem 12:
Rewrite C = λf.λg.λx.(g(f(x))) from Problem 10 using this shorthand.

Remember that this is only notation. Curried functions are not multivariable functions, they
are simply shorthand! Any function presented with this notation must still be evaluated one
variable at a time, just like an un-curried function. Substituting all curried variables at once will
cause errors.

1After Haskell Brooks Curry2, a logician that contributed to the theory of functional computation.
2There are three programming languages named after him: Haskell, Brook, and Curry.
Two of these are functional, and one is an oddball GPU language last released in 2007.
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Problem 13:
Let Q = λabc.b. Reduce (Q a c b).
Hint: You may want to rename a few variables.
The a, b, c in Q are different than the a, b, c in the expression!

Solution

I’ll rewrite (Q a c b) as (Q a1 c1 b1):

Q = (λabc.b) = (λa.λb.λc.b)

(λa.λb.λc.b) a1 = (λb.λc.b)

(λb.λc.b) c1 = (λc.c1)

(λc.c1) b1 = c1

Problem 14:
Reduce ((λa.a) λbc.b) d λeg.g

Solution

((λa.a) λbc.b) d λeg.g
= (λbc.b) d λeg.g
= (λc.d) λeg.g
= d
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Part 2: Combinators

Definition 15:
A free variable in a λ-expression is a variable that isn’t bound to any input.
For example, b is a free variable in (λa.a) b.

Definition 16: Combinators
A combinator is a lambda expression with no free variables.
Notable combinators are often named after birds.3 We’ve already met a few:
The Idiot, I = λa.a
The Mockingbird, M = λf.ff
The Cardinal, C = λfgx.( f(g(x)) ) The Kestrel, K = λab.a

Problem 17:
If we give the Kestrel two arguments, it does something interesting:
It selects the first and rejects the second.
Convince yourself of this fact by evaluating (K ♥ ⋆).

Problem 18:
Modify the Kestrel so that it selects its second argument and rejects the first.

Solution

λab.b.

Problem 19:
We’ll call the combinator from Problem 18 the Kite, KI.
Show that we can also obtain the kite by evaluating (K I).
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Part 3: Boolean Algebra
The Kestrel selects its first argument, and the Kite selects its second.
Maybe we can somehow put this “choosing” behavior to work...
Let T = K = λab.a
Let F = KI = λab.b

Problem 20:
Write a function NOT so that (NOT T ) = F and (NOT F ) = T .
Hint: What is (T ♥ ⋆)? How about (F ♥ ⋆)?

Solution

NOT = λa.(a F T )

Problem 21:
How would “if” statements work in this model of boolean logic?
Say we have a boolean B and two expressions ET and EF . Can we write a function that evaluates to
ET if B is true, and to EF otherwise?
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Problem 22:
Write functions AND, OR, and XOR that satisfy the following table.

A B (AND A B) (OR A B) (XOR A B)

F F F F F
F T F T T
T F F T T
T T T T F

Solution

There’s more than one way to do this, of course.

AND = λab.(a b F ) = λab.aba

OR = λab.(a T b) = λab.aab

XOR = λab.(a (NOT b) b)

Another clever solution is OR = λab.(M a b)

Problem 23:
To complete our boolean algebra, construct the boolean equality check EQ.
What inputs should it take? What outputs should it produce?

Solution

EQ = λab.[a (bTF ) (bFT )] = λab.[a b (NOT b)]

EQ = λab.[NOT (XOR a b)]
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Part 4: Numbers
Since the only objects we have in λ calculus are functions, it’s natural to think of quantities as
adverbs (once, twice, thrice,...) rather than nouns (one, two, three ...)
We’ll start with zero. If our numbers are once, twice, and twice, it may make sense to make zero don’t.
Here’s our don’t function: given a function and an input, don’t apply the function to the input.

0 = λfa.a

If you look closely, you’ll find that 0 is equivalent to the false function F .

Problem 24:
Write 1, 2, and 3. We will call these Church numerals.4
Note: This problem read aloud is “Define once, twice, and thrice.”

Solution

1 calls a function once on its argument:
1 = λfa.(f a).
Naturally,
2 = λfa.[ f (f a) ]
3 = λfa.[ f (f (f a)) ]

The round parentheses are essential. Our lambda calculus is left-associative!
Also, note that zero is false and one is the (two-variable) identity.

Problem 25:
What is (4 I) ⋆?

Problem 26:
What is (3 NOT T )?
How about (8 NOT F )?

4after Alonzo Church, the inventor of lambda calculus and these numerals. He was Alan Turing’s thesis advisor.
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Problem 27:
Peano’s axioms state that we only need a zero element and a “successor” operation to build the
natural numbers. We’ve already defined zero. Now, create a successor operation so that 1 := S(0),
2 := S(1), and so on.
Hint: A good signature for this function is λnfa, or more clearly λn.λfa. Do you see why?

Solution

S = λn.[λfa.f (n f a)] = λnfa.[f (n f a)]

Do f n times, then do f one more time.

Problem 28:
Verify that S(0) = 1 and S(1) = 2.
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Assume that only Church numerals will be passed to the functions in the following problems.
We make no promises about their output if they’re given anything else.

Problem 29:
Define a function ADD that adds two Church numerals.

Solution

ADD = λmn.(m S n) = λmn.(n S m)

Note for Instructors

Defining “equivalence” is a bit tricky. The solution above illustrates the problem pretty well.
Note: The notions of “extensional” and “intentional” equivalence may be interesting in this
context. Do some reading on your own.

These two definitions of ADD are equivalent if we apply them to Church numerals. If we were
to apply these two versions of ADD to functions that behave in a different way, we’ll most
likely get two different results!
As a simple example, try applying both versions of ADD to the Kestrel and the Kite.
To compare functions that aren’t α-equivalent, we’ll need to restrict our domain to functions
of a certain form, saying that two functions are equivalent over a certain domain.

Problem 30:
Design a function MULT that multiplies two numbers.
Hint: The easy solution uses ADD, the elegant one doesn’t. Find both!

Solution

MULT = λmn.[m (ADD n) m]
MULT = λmnf.[m (n f)]
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Problem 31:
Define the functions Z and NZ. Z should reduce to T if its input was zero, and F if it wasn’t.
NZ does the opposite. Z and NZ should look fairly similar.

Solution

Z = λn.[n (λa.F ) T ]
NZ = λn.[n (λa.T ) F ]

Problem 32:
Design an expression PAIR that constructs two-value tuples.
For example, say A = PAIR 1 2. Then,
(A T ) should reduce to 1 and (A F ) should reduce to 2.

Solution

PAIR = λab.λi.(i a b) = λabi.iab

From now on, I’ll write (PAIR A B) as 〈A,B〉.
Like currying, this is only notation. The underlying logic remains the same.
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Problem 33:
Write a function H, which we’ll call “shift and add.”
It does exactly what it says on the tin:
Given an input pair, it should shift its second argument left, then add one.
H 〈0, 1〉 should reduce to 〈1, 2〉
H 〈1, 2〉 should reduce to 〈2, 3〉
H 〈10, 4〉 should reduce to 〈4, 5〉

Solution

H = λp.
⟨
(p F ) , S(p F )

⟩
Note that H 〈0, 0〉 reduces to 〈0, 1〉

Problem 34:
Design a function D that un-does S. That means
D(1) = 0, D(2) = 1, etc. D(0) should be zero.
Hint: H will help you make an elegant solution.

Solution

D = λn.
[
( n H 〈0, 0〉 ) T

]
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Part 5: Recursion
Say we want a function that computes the factorial of a positive integer. Here’s one way we could
define it:

x! =

{
x× (x− 1)! x 6= 0

1 x = 0

We cannot re-create this in lambda calculus, since we aren’t given a way to recursively call functions.
One could think that A = λa.A a is a recursive function. In fact, it is not.
Remember that such “definitions” aren’t formal structures in lambda calculus.
They’re just shorthand that simplifies notation.

Note for Instructors

We’re talking about recursion, and computability isn’t far away. At one point or another, it
may be good to give the class a precise definition of “computable by lambda calculus:”

Say we have a device that reduces a λ expression to β-normal form. We give it an expression,
and the machine simplifies it as much as it can and spits out the result.
An algorithm is “computable by lambda calculus” if we can encode its input in an expression
that resolves to the algorithm’s output.

Problem 35:
Write an expression that resolves to itself.
Hint: Your answer should be quite short.
This expression is often called Ω, after the last letter of the Greek alphabet.
Ω useless on its own, but it gives us a starting point for recursion.

Solution

Ω = M M = (λx.xx)(λx.xx)

An uninspired mathematician might call the Mockingbird ω, “little omega”.
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Definition 36:
This is the Y-combinator. You may notice that it’s just Ω put to work.

Y = λf.(λx.f(x x))(λx.f(x x))

Problem 37:
What does this thing do?
Evaluate Y f .
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Part 6: Challenges
Do Problem 38 first, then finish the rest in any order.

Problem 38:
Design a recursive factorial function using Y .

Solution

FAC = λyn.[Z n][1][MULT n (y (D n))]
To compute the factorial of 5, evaluate (Y FAC 5).

Problem 39:
Design a non-recursive factorial function.
This one is easier than Problem 38, but I don’t think it will help you solve it.

Solution

FAC0 = λp.
⟨ [

D (p t)
]
,
[
MULT (p T ) (p F )

] ⟩
FAC = λn.

(
n FAC0 〈n, 1〉

)

Problem 40:
Solve Problem 34 without using H.
In Problem 34, we created the “decrement” function.

Solution

One solution is below. Can you figure out how it works?

D0 = λp.
[
p T

]⟨
F , p F

⟩⟨
F ,

⟨
p F T , ((p F T ) (P F F ))

⟩⟩
D = λnfa.

(
nD0

⟨
T, 〈f, a〉

⟩)
F F

Problem 41:
Using pairs, make a “list” data structure. Define a GET function, so that GET L n reduces to the
nth item in the list. GET L 0 should give the first item in the list, and GET L 1, the second.
Lists have a defined length, so you should be able to tell when you’re on the last element.

Solution

One possible implementation is
⟨
〈is last , item〉 , next...

⟩
, where:

“is last” is a boolean, true iff this is the last item in the list.
“item” is the thing you’re storing
“next...” is another one of these list fragments.
It doesn’t matter what “next” is in the last list fragment. A dedicated “is last” slot allows us
to store arbitrary functions in this list.
Here, GET = λnL.[(n L F ) T F ]
This will break if n is out of range.

18



Problem 42:
Write a lambda expression that represents the Fibonacci function:
f(0) = 1, f(1) = 1, f(n+ 2) = f(n+ 1) + f(n).

Problem 43:
Write a lambda expression that evaluates to T if a number n is prime, and to F otherwise.

Problem 44:
Write a function MOD so that (MOD a b) reduces to the remainder of a÷ b.

Problem 45: Bonus
Play with Lamb, an automatic lambda expression evaluator.
https://git.betalupi.com/Mark/lamb
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