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Part 1: Logical Algebra

Definition 1:
Logical operators operate on the values {true, false},
just like algebraic operators operate on numbers.
In this handout, we’ll use the following operators:

• ¬: not
• ∧: and
• ∨: or
• →: implies
• (): parenthesis.

The function of these is defined by truth tables:

and
A B A ∧B
F F F
F T F
T F F
T T T

or
A B A ∨B
F F F
F T T
T F T
T T T

implies
A B A→ B
F F T
F T T
T F F
T T T

not
A ¬A
T F
F T

A ∧B is true only if both A and B are true. A ∨B is true if A or B (or both) are true.
¬A is the opposite of A, which is why it looks like a “negative” sign.
A→ B is a bit harder to understand. Read aloud, this is “A implies B.”
The only time → produces false is when true → false. This fact may seem counterintuitive, but
will make more sense as we progress through this handout.
Hint: Think about it—if event α implies β, it is impossible for α to occur without β.
This is the only impossibility. All other variants are valid.

Problem 2:
Evaluate the following.

• ¬T
• F ∨ T
• T ∧ T
• (T ∧ F) ∨ T
• (¬(F ∨ ¬T)) → ¬T
• (F → T) → (¬F ∨ ¬T)
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Solution
F T T T F T
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Note for Instructors

We can also think of [x ≥ 0] → b as follows: if x isn’t the kind of object we care about, we
evaluate true and check the next one. If x is the kind of object we care about and b is false, we
have a counterexample to [x ≥ 0] → b, and thus T → F must be false.
Say we have the sentence ∀x (a→ b).
For example, take φ = ∀x ([x ≥ 0] → [∃y y2 = x]).
φ holds whenever any positive x has a square root.
If (F → ∗) returned false, statements like the above would be hard to write.
If x is negative, φ doesn’t care whether or not it has a root. In this case, F → ∗ must be true
to avoid making whole ∀ false.

Problem 3:
Evaluate the following.

• A→ T for any A
• (¬(A→ B)) → A for any A,B
• (A→ B) → (¬B → ¬A) for any A,B

Note for Instructors

Note that the last formula is the contrapositive of A→ B.

Solution

All are true.

Problem 4:
Show that ¬(A→ ¬B) is equivalent to A ∧B.
That is, show that these expressions always evaluate to the same value given the same A and B.
Hint: Use a truth table

Problem 5:
Write an expression equivalent to A ∨B using only ¬, →, and ()?

Solution

((¬A) → B)

Note that both ∧ and ∨ can be defined using the other logical symbols.
The only logical symbols we need are ¬, →, and ().
We include ∧ and ∨ to simplify our expressions.

3



Part 2: Structures

Definition 6:
A universe is a set of meaningless objects. Here are a few examples:

• {a, b, ..., z}
• {0, 1}
• Z, R, etc.

Definition 7:
A structure consists of a universe and a set of symbols.
A structure’s symbols give meaning to the objects in its universe.
Symbols come in three types:

• Constant symbols, which let us specify specific elements of our universe.
Examples: 0, 1, 12 , π

• Function symbols, which let us navigate between elements of our universe.
Examples: +,×, sinx,

√
x

Note that symbols we usually call “operators” are functions under this definition.
The only difference between a+ b and +(a, b) is notation.

• Relation symbols, which let us compare elements of our universe.
Examples: <,>,≤,≥

The equality check = is not a relation symbol. It is included in every structure by default.
By definition, a = b is true if and only if a and b are the same element of our universe.

Example 8:
The first structure we’ll look at is the following:(

Z
∣∣ {0, 1,+,−, <})

This is a structure over the universe Z that provides the following symbols:
• Constants: {0, 1}
• Functions: {+,−}
• Relations: {<}

If we look at our set of constant symbols, we see that the only integers we can directly refer to in this
structure are 0 and 1. If we want any others, we must define them using the tools this structure offers.
To “define” an element of a set, we need to write a sentence that is only true for that element.
If we want to define 2 in the structure above, we could use the following sentence:

“2 is the x that satisfies [1 + 1 = x].”

This is a valid definition because 2 is the only element of Z for which [1 + 1 = x] evaluates to true.

Problem 9:
Define −1 in

(
Z
∣∣ {0, 1,+,−, <}).

Solution

The sentences “x where [x+ 1 = 0]” and “x where [0− 1 = x]” both work.
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Let us formalize what we found in the previous two problems.

Definition 10: Formulas
A formula in a structure S is a well-formed string of constants, functions, relations,
and logical operators.
You already know what a “well-formed string” is: 1 + 1 is fine,

√
+ is nonsense.

For the sake of time, I will not provide a formal definition — it isn’t particularly interesting.
As a quick example, the formula ψ := [¬(1 = 1)] is always false,
and φ(x) := [1 + 1 = x] evaluates to true only when x is 2.

Definition 11: Free Variables
A formula can contain one or more free variables. These are denoted φ(a, b, ...).
Formulas with free variables let us define “properties” that certain objects have.
For example, consider the two formulas from the previous definition, ψ and φ:

• ψ := [¬(1 = 1)]
There are no free variables in this formula.
In any structure, ψ is always either true or false.

• φ(x) := [1 + 1 = x]
This formula has one free variable, labeled x.
The value of φ(x) depends on the x we’re talking about:
φ(72) is false, and φ(2) is true.

This “free variable” notation is very similar to the function notation we are used to:
The values of both φ(x) := [x > 0] and f(x) = x+ 1 depend on x.

Definition 12: Definable Elements
Let S be a structure over a universe U .
We say an element x ∈ U is definable in S if we can write a formula φ(x) that only x satisfies.

Problem 13:
Define 2 in the structure

(
Z+

∣∣ {4,×}
)

.
Hint: Z+ = {1, 2, 3, ...}. Also, 2× 2 = 4.

Solution

2 is the only element in Z+ that satisfies φ(x) := [x× x = 4].
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Problem 14:
Try to define 2 in the structure

(
Z
∣∣ {4,×}

)
.

Why can’t you do it?

Solution

We could try φ(x) := [x× x = 4], but this is satisfied by both 2 and −2.
We have no way to distinguish between negative and positive numbers.
This problem is intentionally hand-wavy. We don’t have the tools to write a proper proof.

Note for Instructors

Actually, it is. Bonus problem: how?
Do this after understanding quantifiers.

Problem 15:
Consider the structure

(
R+

0

∣∣ {1, 2,÷}
)

• Define 22

• Define 2n for all positive integers n
• Define 2−n for all positive integers n
• What other numbers can we define in this structure?

Hint: There is at least one more “class” of numbers we can define.

Solution

As far as I’ve seen, we can define any 2a/b for a, b ∈ Z.
For example, ϕ(x) := [2 = x÷ (1÷ x)] defines

√
2.
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Part 3: Quantifiers
Recall the logical symbols we introduced earlier: (),∧,∨,¬,→
We will now add two more: ∀ (for all) and ∃ (exists).

Definition 16:
∀ and ∃ are quantifiers. They allow us to make statements about arbitrary symbols.
Quantifiers are aptly named: they tell us how many symbols satisfy a certain sentence.
Let’s look at ∀ first. If φ(x) is a formula,
the formula ∀x φ(x) is true only if φ is true for all x in our universe.
For example, take the formula ∀x (0 < x).
In English, this means “For any x, x is bigger than zero,” or simply “Any x is positive.”

∃ is very similar: the formula ∃x φ(x) is true if there is at least one x for which φ(x) is true.
For example, ∃ (0 < x) means “there is a positive number in our set.”

Problem 17:
Which of the following are true in Z? Which are true in R+

0 ?
R+

0 is the set of positive real numbers and zero.
• ∀x (x ≥ 0)

• ¬(∃x (x = 0))

• ∀x [∃y (y × y = x)]

• ∀xy ∃z (x < z < y) This is a compact way to write ∀x (∀y (∃z (x < z < y)))

• ¬∃x (∀y (x < y))

Solution
• “all x are positive” R+

0
• “zero doesn’t exist” neither
• “square roots exist” R+

0
• “this set is dense” R+

0
• “there is no minimum” Z
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Problem 18:
Does the order of ∀ and ∃ in a formula matter?
What’s the difference between ∃x ∀y (x ≤ y) and ∀y ∃x (x ≤ y)?
Hint: Consider R+, the set of positive reals. Zero is not positive.
Which of the above formulas is true in R+, and which is false?

Solution

If ∃x is inside ∀y, x depends on y. We may pick a different value of x for every y.
If ∃x is outside, x is fixed before we check all y.

Problem 19:
Define 0 in

(
Z
∣∣ {×}

)
Solution

φ(x) :=
[
∀y x× y = x

]

Problem 20:
Define 1 in

(
Z
∣∣ {×}

)
Solution

φ(x) :=
[
∀y x× y = y

]
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Problem 21:
Define −1 in

(
Z
∣∣ {0, <})

Solution

φ(x) :=
[
(x < 0) ∧ ¬∃y (x < y < 0)

]

Problem 22:
Let φ(x) be a formula.
Write a formula equivalent to ∀x φ(x) using only logical symbols and ∃.

Solution

∀x φ(x) is true if and only if ¬∃x ¬φ(x) is true.

9



Part 4: Definable Sets
Armed with (),∧,∨,¬,→, ∀, and ∃, we have the tools to define sets.

Definition 23: Set-Builder Notation
Say we have a sentence φ(x).
The set of all elements that satisfy that sentence may be written as follows:

{x | φ(x)}

This is read “The set of x where φ is true” or “The set of x that satisfy φ.”
For example, take the formula φ(x) = ∃y (y + y = x).
The set of all even integers can then be written as

{x | ∃y (y + y = x)}

Definition 24: Definable Sets
Let S be a structure with a universe U .
We say a subset M of U is definable if we can write a formula
that is true for some x if and only if M contains x.

For example, consider the structure
(
Z
∣∣ {+}

)
.

Only even numbers satisfy the formula φ(x) :=
[
∃y (y + y = x)

]
,

so we can define “the set of even numbers” as {x | ∃y (y + y = x)}.
Remember—we can only use symbols that are available in our structure!

Problem 25:
The empty set is definable in any structure. How?

Solution

Always: {x | ¬(x = x)}

Problem 26:
Define {0, 1} in

(
Z+
0

∣∣ {<}) Hint: Define 0 and 1 as elements first, and remember that we can use
logical symbols.

Solution

φ0(x) :=
[
¬∃y y < x

]
φ1(x) :=

[
(0 < x) ∧ ¬∃y (x < y < 0)

]
Our final solution is {x | φ0(x) ∨ φ1(x)}.
A finite set of definable elements is always definable.
An infinite set of definable elements might not be definable.

Problem 27:
Define the set of prime numbers in

(
Z
∣∣ {×,÷, <}).

Hint: A prime number is an integer that is positive and is only divisible by 1 and itself.

Solution

ψ(x) :=
[
∃y (0 < y < x)

]
“x is positive and isn’t 0 or 1”

φ(x) :=
[
(x < 0) ∧ ¬∃ab (ψ(a) ∧ ψ(b) ∧ a× b = x)

]
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Problem 28:
Define R+

0 in
(
R

∣∣ {×}
)

Solution

φ(x) :=
[
∃y y × y = x

]

Problem 29:
Let △ be a relational symbol. a△ b is only true if a divides b.
Define the set of prime numbers in

(
Z+

∣∣ {△}
)

Solution

φ(x) :=
[
¬∃abc

(
(a△ x) ∧ (b△ x) ∧ (c△ x) ∧ ¬(a = b) ∧ ¬(a = c) ∧ ¬(b = c)

) ]

Theorem 30: Lagrange’s Four Square Theorem
Every natural number may be written as a sum of four integer squares.

Problem 31:
Define Z+

0 in
(
Z
∣∣ {×,+}

)
Solution

φ(x) :=
[
∃abcd (a2 + b2 + c2 + d2 = x)

]
, where a2 := a× a.

Problem 32:
Define < in

(
Z
∣∣ {×,+}

)
Hint: We can’t formally define a relation yet. Don’t worry about that for now.
You can repharase this question as “given x, y ∈ Z, write a formula φ(x, y) that is only true if x < y”

Solution

Let ψ(x) be the formula from the previous problem.
φ(x, y) :=

[
¬(x = y) ∧ ∃d

(
ψ(d) ∧ (x+ d = y)

) ]
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Problem 33:
Consider the structure S = (R | {0, ⋄})
The relation a ⋄ b holds if |a− b| = 1

Part 1:
Define {−1, 1} in S.

Solution

φ(x) :=
[
0 ⋄ x

]
Part 2:
Define {−2, 2} in S.

Solution

φ(x) :=
[
∀a (0 ⋄ x→ a ⋄ x) ∧ ¬(x = 0)

]

Problem 34:
Let P be the set of all subsets of Z+

0 . This is called the power set of Z+
0 .

Let S be the structure (P | {⊆})

Part 1:
Show that the empty set is definable in S.
Hint: Defining {} with {x | ¬x = x} is not what we need here.
We need ∅ ∈ P , the “empty set” element in the power set of Z+

0 .

Solution

φ(x) :=
[
∀y x ⊆ y

]
Note that we can use the same property to define 0 in (Z | {≤})

Part 2:
Let x ≎ y be a relation on P. x ≎ y holds if x ∩ y ̸= {}.
Show that ≎ is definable in S.

Solution

Let ψ(x) be the formula from the previous problem.
φ(x, y) :=

[
∃x (a ⊆ x) ∧ (a ⊆ y) ∧ ¬ψ(a)

]

Part 3:
Let f be the function on P defined by f(x) = Z+

0 − x. This is called the complement of x.
Show that f is definable in S.
Hint: You can define a function by writing a formula φ(x, y) that is only true when y = f(x).
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Part 5: Equivalence

Notation:
Let S be a structure and φ a formula.
If φ is true in S, we write S |= φ.
This is read “S satisfies φ”

Definition 35:
Let S and T be structures.
We say S and T are equivalent (and write S ≡ T ) if for any formula φ, S |= φ⇐⇒ T |= φ.
If S and T are not equivalent, we write S ̸≡ T .

Problem 36:
Show that

(
Z
∣∣ {+, 0}) ̸≡

(
R

∣∣ {+, 0})

Problem 37:
Show that

(
Z
∣∣ {+, 0}) ̸≡

(
N

∣∣ {+, 0})

Problem 38:
Show that

(
R

∣∣ {+, 0}) ̸≡
(
N

∣∣ {+, 0})

Problem 39:
Show that

(
R

∣∣ {+, 0}) ̸≡
(
Z2

∣∣ {+, 0})

Problem 40:
Show that

(
Z
∣∣ {+, 0}) ̸≡

(
Z2

∣∣ {+, 0})
Solution

All of the above are easy, but the last one can take a while.
The trick is to notice that Z has two equivalence classes mod 2, while Z2 has four.
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