
Advanced 2 betalupi.com/handouts

Fast Inverse Square Root
Prepared by Mark on March 3, 2025

Section 1: Introduction
In 2005, ID Software published the source code of Quake III Arena, a popular game released in 1999.
This caused quite a stir: ID Software was responsible for many games popular among old-school engineers
(most notably Doom, which has a place in programmer humor even today).
Naturally, this community immediately began dissecting Quake’s source.
One particularly interesting function is reproduced below, with original comments:

float Q_rsqrt(float number) {
 long i;
 float x2, y;
 const float threehalfs = 1.5F;

 x2 = number * 0.5F;
 y = number;
 i = * (long *) &y; // evil floating point bit level hacking
 i = 0x5f3759df - (i >> 1); // [redacted]
 y = * (float *) &i;
 y = y * (threehalfs - (x2 * y * y)); // 1st iteration
// y = y * (threehalfs - (x2 * y * y)); // 2nd iteration, this can be removed

 return y;
}

This code defines a function Q_sqrt, which was used as a fast approximation of the inverse square root
in graphics routines. (in other words, Q_sqrt efficiently approximates 1 ÷

√
𝑥)

The key word here is “fast”: Quake ran on very limited hardware, and traditional approximation
techniques (like Taylor series)¹ were too computationally expensive to be viable.

Our goal today is to understand how Q_sqrt works.
To do that, we’ll first need to understand how computers represent numbers.
We’ll start with simple binary integers—turn the page.

¹Taylor series aren’t used today, and for the same reason. There are better ways.

1

https://betalupi.com/handouts

Section 2: Integers

Definition 1:
A bit string is a string of binary digits.
In this handout, we’ll denote bit strings with the prefix 0b.
This prefix is only notation—it is not part of the string itself.
For example, 1001 is the number “one thousand and one,” while 0b1001 is the string of bits “1 0 0 1”.
We will separate long bit strings with underscores for readability.
Underscores have no meaning: 0b1111_0000 = 0b11110000.

Problem 2:
What is the value of the following bit strings, if we interpret them as integers in base 2?

• 0b0001_1010
• 0b0110_0001

Definition 3:
We can interpret a bit string in any number of ways.
One such interpretation is the unsigned integer, or uint for short.
uints allow us to represent positive (hence “unsigned”) integers using 32-bit strings.
The value of a uint is simply its value as a binary number:

• 0b00000000_00000000_00000000_00000000 = 0
• 0b00000000_00000000_00000000_00000011 = 3
• 0b00000000_00000000_00000000_00100000 = 32
• 0b00000000_00000000_00000000_10000010 = 130

Problem 4:
What is the largest number we can represent with a 32-bit uint?

2

Problem 5:
Find the value of each of the following 32-bit unsigned integers:

• 0b00000000_00000000_00000101_00111001
• 0b00000000_00000000_00000001_00101100
• 0b00000000_00000000_00000100_10110000

Hint: The third conversion is easy—look carefully at the second.

Definition 6:
In general, fast division of uints is difficult².
Division by powers of two, however, is incredibly easy:
To divide by two, all we need to do is shift the bits of our integer right.
For example, consider 0b0000_0110 = 6.
If we insert a zero at the left end of this string and delete the zero at the right
(thus “shifting” each bit right), we get 0b0000_0011, which is 3.
Of course, we lose the remainder when we right-shift an odd number:
9 shifted right is 4, since 0b0000_1001 shifted right is 0b0000_0100.

Problem 7:
Right shifts are denoted by the >> symbol:
00110 >> 𝑛 means “shift 0b0110 right 𝑛 times.”
Find the value of the following:

• 12 >> 1
• 27 >> 3
• 16 >> 8

Naturally, you’ll have to convert these integers to binary first.

²One may use repeated subtraction, but this isn’t efficient.

3

Section 3: Floats

Definition 8:
Binary decimals³ are very similar to base-10 decimals.
In base 10, we interpret place value as follows:

• 0.1 = 10−1
• 0.03 = 3 × 10−2
• 0.0208 = 2 × 10−2 + 8 × 10−4

We can do the same in base 2:
• 0.1 = 2−1 = 0.5
• 0.011 = 2−2 + 2−3 = 0.375
• 101.01 = 5.125

Problem 9:
Rewrite the following binary decimals in base 10:
You may leave your answer as a fraction.

• 1011.101
• 110.1101

³Note that “binary decimal” is a misnomer—“deci” means “ten”!

4

Definition 10:
Another way we can interpret a bit string is as a signed floating-point decimal, or a float for short.
Floats represent a subset of the real numbers, and are interpreted as follows:
The following only applies to floats that consist of 32 bits. We won’t encounter any others today.

0 b 0 _ 0 0 0 0 0 0 0 0 _ 0 0 0 0 0 0 0 _ 0 0 0 0 0 0 0 0 _ 0 0 0 0 0 0 0 0

s exponent fraction

• The first bit denotes the sign of the float’s value We’ll label it 𝑠.
If 𝑠 = 1, this float is negative; if 𝑠 = 0, it is positive.

• The next eight bits represent the exponent of this float. (we’ll see what that means soon)
We’ll call the value of this eight-bit binary integer 𝐸.
Naturally, 0 ≤ 𝐸 ≤ 255 (since 𝐸 consist of eight bits)

• The remaining 23 bits represent the fraction of this float.
They are interpreted as the fractional part of a binary decimal.
For example, the bits 0b10100000_00000000_00000000 represent 0.5 + 0.125 = 0.625.
We’ll call the value of these bits as a binary integer 𝐹 .
Their value as a binary decimal is then 𝐹 ÷ 223. (convince yourself of this)

Problem 11:
Consider 0b01000001_10101000_00000000_00000000.
Hint: The underscores here do not match those in Definition 10
Find the 𝑠, 𝐸, and 𝐹 we get if we interpret this bit string as a float.
Leave 𝐹 as a sum of powers of two.

Definition 12:
The final value of a float with sign 𝑠, exponent 𝐸, and fraction 𝐹 is

(−1)𝑠 × 2𝐸−127 ×(1 + 𝐹
223
)

Notice that this is very similar to base-10 scientific notation, which is written as
(−1)𝑠 × 10𝑒 × (𝑓)

We subtract 127 from 𝐸 so we can represent positive and negative numbers.
𝐸 is an eight bit binary integer, so 0 ≤ 𝐸 ≤ 255 and thus −127 ≤ (𝐸 − 127) ≤ 127.

Problem 13:
Consider 0b01000001_10101000_00000000_00000000.
This is the same bit string we used in Problem 11.
What value do we get if we interpret this bit string as a float?
Hint: 21 ÷ 16 = 1.3125

5

Problem 14:
Encode 12.5 as a float.
Hint: 12.5 ÷ 8 = 1.5625

Definition 15:
Say we have a bit string 𝑥.
We’ll let 𝑥𝑓 denote the value we get if we interpret 𝑥 as a float,
and we’ll let 𝑥𝑖 denote the value we get if we interpret 𝑥 an integer.

Problem 16:
Let 𝑥 = 0b01000001_01001000_00000000_00000000.
What are 𝑥𝑓 and 𝑥𝑖? As always, you may leave big numbers as powers of two.

6

Section 4: Integers and Floats

Observation:
If 𝑥 is smaller than 1, log2(1 + 𝑥) is approximately equal to 𝑥.
Note that this equality is exact for 𝑥 = 0 and 𝑥 = 1, since log2(1) = 0 and log2(2) = 1.

We’ll add the correction term 𝜀 to our approximation: log2(1 + 𝑎) ≈ 𝑎 + 𝜀.
This allows us to improve the average error of our linear approximation:

log2(1 + 𝑥) and 𝑥 + 0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Max error: 0.086
Average error: 0.0573

log2(1 + 𝑥) and 𝑥 + 0.045

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Max error: 0.041
Average error: 0.0254

A suitiable value of 𝜀 can be found using calculus or with computational trial-and-error.
We won’t bother with this—we’ll simply leave the correction term as an opaque constant 𝜀.

Note: “Average error” above is simply the area of the region between the two graphs:

∫
1

0
| log(1 + 𝑥)2 − (𝑥 + 𝜀) |

Feel free to ignore this note, it isn’t a critical part of this handout.

7

Problem 17:
Use the fact that log2(1 + 𝑎) ≈ 𝑎 + 𝜀 to approximate log2(𝑥𝑓) in terms of 𝑥𝑖.
Namely, show that

log2(𝑥𝑓) =
𝑥𝑖
223
− 127 + 𝜀

In other words, we’re finding an expression for 𝑥 as a float in terms of 𝑥 as an int.

Problem 18:
Using basic log rules, rewrite log2(1√

𝑥) in terms of log2(𝑥).

8

Section 5: The Fast Inverse Square Root
A simplified version of the Quake routine we are studying is reproduced below.
float Q_rsqrt(float number) {
 long i = * (long *) &number;
 i = 0x5f3759df - (i >> 1);
 return * (float *) &i;
}

This code defines a function Q_rsqrt that consumes a float number and approximates its inverse square
root. If we rewrite this using notation we’re familiar with, we get the following:

Q_sqrt (𝑛𝑓) = 6240089 − (𝑛𝑖 ÷ 2) ≈ 1
√𝑛𝑓

0x5f3759df is 6240089 in hexadecimal.
Ask an instructor to explain if you don’t know what this means.
It is a magic number hard-coded into Q_sqrt.
Our goal in this section is to understand why this works:

• How does Quake approximate 1√𝑥 by simply subtracting and dividing by two?
• What’s special about 6240089?

Remark 19:
For those that are interested, here are the details of the “code-to-math” translation:

• “long i = * (long *) &number” is C magic that tells the compiler
to set i to the uint value of the bits of number.
“long” refers to a “long integer”, which has 32 bits.
Normal ints have 16 bits, short ints have 8.
In other words, number is 𝑛𝑓 and i is 𝑛𝑖.

• Notice the right-shift in the second line of the function.
We translated (i >> 1) into (𝑛𝑖 ÷ 2).

• “return * (float *) &i” is again C magic.
Much like before, it tells us to return the value of the bits of i as a float.

9

Setup:
We are now ready to show that Q_sqrt (𝑥) effectively approximates 1√𝑥 .
For convenience, let’s call the bit string of the inverse square root 𝑟.
In other words,

𝑟𝑓 ≔
1
√𝑛𝑓

This is the value we want to approximate.

Problem 20:
Find an approximation for log2(𝑟𝑓) in terms of 𝑛𝑖 and 𝜀
Remember, 𝜀 is the correction constant in our approximation of log2(1 + 𝑥).

Problem 21:
Let’s call the “magic number” in the code above 𝜅, so that

Q_sqrt (𝑛𝑓) = 𝜅 − (𝑛𝑖 ÷ 2)
Use Problem 17 and Problem 20 to show that Q_sqrt (𝑛𝑓) ≈ 𝑟𝑖
Note: If we know 𝑟𝑖, we know 𝑟𝑓 .
We don’t even need to convert between the two—the underlying bits are the same!

Problem 22:
What is the exact value of 𝜅 in terms of 𝜀?
Hint: Look at Problem 21. We already found it!

10

Remark 23:
In Problem 22 we saw that 𝜅 = (3 × 222)(127 − 𝜀).
Looking at the code again, we see that 𝜅 = 0x5f3759df in Quake:
float Q_rsqrt(float number) {
 long i = * (long *) &number;
 i = 0x5f3759df - (i >> 1);
 return * (float *) &i;
}

Using a calculator and some basic algebra, we can find the 𝜀 this code uses:
Remember, 0x5f3759df is 6240089 in hexadecimal.

(3 × 222)(127 − 𝜀) = 6240089
(127 − 𝜀) = 126.955

𝜀 = 0.0450466
So, 0.045 is the 𝜀 used by Quake.
Online sources state that this constant was generated by trial-and-error,
though it is fairly close to the ideal 𝜀.

Remark 24:
And now, we’re done!
We’ve shown that Q_sqrt(x) approximates 1√𝑥 fairly well.

Notably, Q_sqrt uses zero divisions or multiplications (>> doesn’t count).
This makes it very fast when compared to more traditional approximation techniques (i.e, Taylor series).
In the case of Quake, this is very important. 3D graphics require thousands of inverse-square-root
calculations to render a single frame4, which is not an easy task for a Playstation running at 300MHz.

4e.g, to generate normal vectors

11

Section 6: Bonus – More about Floats

Problem 25:
Convince yourself that all numbers that can be represented as a float are rational.

Problem 26:
Find a rational number that cannot be represented as a float.

Problem 27:
What is the smallest positive 32-bit float?

Problem 28:
What is the largest positive 32-bit float?

Problem 29:
How many floats are between −1 and 1?

Problem 30:
How many floats are between 1 and 2?

Problem 31:
How many floats are between 1 and 128?

12

	Introduction
	Integers
	Floats
	Integers and Floats
	The Fast Inverse Square Root
	Bonus – More about Floats

