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This file contains solutions and notes.
Compile with the “nosolutions” flag before distributing.
Click [here] for the latest version of this handout.

Part 1: Error Detection
An ISBN1 is a unique numeric book identifier. It comes in two forms: ISBN-10 and ISBN-13.
Naturally, ISBN-10s have ten digits, and ISBN-13s have thirteen. The final digit in both versions is a
check digit.

Say we have a sequence of nine digits, forming a partial ISBN-10: n1n2...n9.
The final digit, n10, is chosen from {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} so that:

10∑
i=1

(11− i)ni ≡ 0 mod 11

If n10 is equal to 10, it is written as X.

Problem 1:
Only one of the following ISBNs is valid. Which one is it?

• 0-134-54896-2
• 0-895-77258-2

Solution

The first has an inconsistent check digit.

1International Standard Book Number
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Problem 2:
Take a valid ISBN-10 and change one digit. Is it possible that you get another valid ISBN-10?
Provide a proof.

Solution

Let S be the sum 10n1 + 9n2 + ...+ 2n9 + n10, before any digits are changed.

If you change one digit of the ISBN, S changes by km, where k ∈ {1, 2, ..., 10} and |m| ≤ 10.
k and m cannot be divisible by 11, thus km cannot be divisible by 11.

We know that S ≡ 0 (mod 11).
After the change, the checksum is S + km ≡ km ̸≡ 0 (mod 11).

Problem 3:
Take a valid ISBN-10 and swap two adjacent digits. When will the result be a valid ISBN-10?
This is called a transposition error.

Solution

Let n1n2...n10 be a valid ISBN-10.
When we swap ni and ni+1, we subtract ni and add ni+1 to the checksum.

If the new ISBN is to be valid, we must have that ni+1 − ni ≡ 0 (mod 11).
This is impossible unless ni = ni+1. Figure out why yourself.
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Definition 4:
ISBN-13 error checking is slightly different. Given a partial ISBN-13 n1n2n3...n12, the final digit is
given by

n13 =

[
12∑
i=1

ni × (2 + (−1)i)

]
mod 10

Problem 5:
What is the last digit of the following ISBN-13?
978-030-7292-06*

Solution

The final digit is 3.

Problem 6:
Take a valid ISBN-13 and change one digit. Is it possible that you get another valid ISBN-13?
If you can, provide an example; if you can’t, provide a proof.

Solution

Let n1n2...n13 be a valid ISBN-13. Choose some ni and change it to mi.

Since ni, mi ∈ {0, 1, 2, ..., 9}, −9 ≤ ni −mi ≤ 9.
Case 0: i is 13
This is trivial.
Case 1: i is odd
For the new ISBN to be valid, we need ni −mi ≡ 0 (mod 10).
This cannot happen if ni ̸= mi.
Case 2: i is even
For the new ISBN to be valid, we need 3(ni −mi) ≡ 0 (mod 10)
This cannot happen, 10 and 3 are coprime.

Problem 7:
Take a valid ISBN-13 and swap two adjacent digits. When will the result be a valid ISBN-13?
Hint: The answer here is more interesting than it was last time.

Solution

Say we swap ni and ni+1, where i ∈ {1, 2, ..., 11}.
The checksum changes by 2(ni+1 − ni), and will
remain the same if this value is ≡ 0 (mod 10).

Problem 8:
978-008-2066-466 was a valid ISBN until I changed a single digit.
Can you find the digit I changed? Can you recover the original ISBN?

Solution

Nope, unless you look at the meaning of each digit in the spec.
If you’re unlucky, maybe not even then.
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Part 2: Error Correction
As we saw in Problem 8, the ISBN check-digit scheme does not allow us to correct errors.
QR codes feature a system that does.
Odds are, you’ve seen a QR code with an image in the center. Such codes aren’t “special”—they’re
simply missing their central pixels. The error-correcting algorithm in the QR specification allows us
to read the code despite this damage.

Definition 9: Repeating codes
The simplest possible error-correcting code is a repeating code. It works just as you’d expect:
Instead of sending data once, it sends multiple copies of each bit.
If a few bits are damaged, they can be both detected and repaired.
For example, consider the following three-repeat code encoding the binary string 101:

111 000 111

If we flip any one bit, we can easily find and fix the error.

Problem 10:
How many repeated digits do you need to...

- detect a transposition error?
- correct a transposition error?

Definition 11: Code Efficiency
The efficiency of an error-correcting code is calculated as follows:

number of data bits
total bits sent

For example, the efficiency of the three-repeat code above is 3
9 = 1

3 ≈ 0.33

Problem 12:
What is the efficiency of a k-repeat code?

As you just saw, repeat codes are not a good solution. You need many extra bits for even a small
amount of redundancy. We need a better system.
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Part 3: Hamming Codes
Say we have a 16-bit message, for example 1011 0101 1101 1001.
We will number its bits in binary, from left to right:

Bit
Index

1 0 1 1 0 1 0 1
0000 0001 0010 0011 0100 0101 0110 0111

and so on...

Problem 13:
In this 16-bit message, how many message bits have an index with a one as the last digit?
(i.e, an index that looks like ***1)

Problem 14:
Say we number the bits in a 32-bit message as above.
How many message bits have an index with a one as the nth digit?

We now want a way to detect errors in our 16-bit message. To do this, we’ll replace a few data bits
with parity bits. This will reduce the amount of information we can send, but will also improve our
error-detection capabilities.
Let’s arrange our message in a grid. We’ll make the first bit (currently empty, marked X) a parity bit.
Its value will depend on the content of the message: if our message has an even number of ones, it
will be zero; if our message has an odd number of ones, it will be one.
This first bit ensures that there is an even number of ones in the whole message.

Bit Numbering

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Sample Message

X 0 1 1

0 1 0 1

1 1 0 1

1 0 0 1

Problem 15:
What is the value of the parity bit in the message above?

Problem 16:
Can this coding scheme detect a transposition error?
Can this coding scheme detect two single-bit errors?
Can this coding scheme correct a single-bit error?
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We’ll now add four more parity bits, in positions 0001, 0010, 0100, and 1000:

X X X 1

X 1 0 1

X 1 0 1

1 0 0 1

Bit 0001 will count the parity of all bits with a one in the first digit of their index.
Bit 0010 will count the parity of all bits with a one in the second digit of their index.
Bits 0100 and 1000 work in the same way.
Hint: In 0001, 1 is the first digit. In 0010, 1 is the second digit.
When counting bits in binary numbers, go from right to left.

Problem 17:
Which message bits does each parity bit cover?
In other words, which message bits affect the value of each parity bit?
Four diagrams are shown below. In each grid, fill in the bits that affect the shaded parity bit.

Problem 18:
Compute all parity bits in the message above.
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Problem 19:
Analyze this coding scheme.

• Can we detect one single-bit errors?
• Can we detect two single-bit errors?
• What errors can we correct?

Problem 20:
Each of the following messages has either 0, 1, or two errors.
Find the errors and correct them if possible.
Hint: Bit 0000 should tell you how many errors you have.

0 1 1 1

0 1 1 1

0 0 1 1

1 1 1 0

1 1 0 1

1 0 1 0

0 1 1 0

1 1 0 1

0 1 1 1

1 0 1 1

1 0 1 1

1 0 0 0

Solution

1: Single error at position 1010
2: Double error
3: No error
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Problem 21:
How many parity bits does each message bit affect?
Does this correlate with that message bit’s index?

Problem 22:
Say we have a message with exactly one single-bit error.
If we know which parity bits are inconsistent, how can we find where the error is?

Problem 23:
Generalize this system for messages of 4, 64, or 256 bits.

• How does the resilience of this scheme change if we use a larger message size?
• How does the efficiency of this scheme change if we send larger messages?
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Definition 24:
A deletion error occurs when one bit of the message is deleted.
Likewise, an insertion error consists of a random inserted bit.

Definition 25:
A message stream is an infinite string of binary digits.

Problem 26:
Show that Hamming codes do not reliably detect bit deletions:
Hint: Create a 17-bit message whose first 16 bits are a valid Hamming block,
and which is still valid when a bit (chosen by you; not the 17th) is deleted.

Problem 27:
Convince yourself that Hamming codes cannot correct insertions.
Then, create a 16-bit message that...

• is a valid Hamming block, and
• incorrectly ”corrects” a single bit error when it encounters an insertion error.

As we have seen, Hamming codes effectively handle substitutions, but cannot reliably detect (or
correct) insertions and deletions. Correcting those errors is a bit more difficult: if the number of bits
we receive is variable, how can we split a stream into a series of messages?
This is a rhetorical question, which we’ll discuss another day.
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