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Part 1: Introduction

Definition 1:
Informally, a permutation of a collection of n objects is an ordering of these n objects.
For example, a few permutations of A, B, C, D are ABCD, BCDA, and DACB.
This, however, isn’t the definition we’ll use today. Instead of defining permutations as “ordered lists,”
(as we do above), we’ll define them as functions. Our first goal today is to make sense of this
definition.

Definition 2: Permutations
Let Ω be an arbitrary set of n objects.
A permutation on Ω is a map from Ω to itself that produces a unique output for each input.
In other words, if a and b are different, f(a) and f(b) must also be different.
For example, consider {1, 2, 3}.
One permutation on this set can be defined as follows:

• f(1) = 3
• f(2) = 1
• f(3) = 2

If we take the array 123 and apply

Problem 3:
List all permutations on three objects.
How many permutations of n objects are there?

Problem 4:
What map corresponds to the permutation [321]?

Problem 5:
What map corresponds to the “do-nothing” permutation?
Write it as a function and in square-bracket notation.
Note: We usually call this the trivial permutation

0The words “function” and “map” are equivalent.
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We can visualize permutations with a string diagram, shown below.
The arrows in this diagram denote the image of f for each possible input. Two examples are below:

1 2 3 4

1 3 4 2

1 2 3 4

2 1 3 4

Note that in all our examples thus far, the objects in our set have an implicit order. This is only for
convenience. The elements of Ω are not ordered (it is a set, after all), and we may present them
however we wish.

For example, consider the diagrams below.
On the left, 1234 are ordered as usual. In the middle, they are ordered alphabetically.
The rightmost diagram uses arbitrary, meaningless labels.

1 2 3 4

2 1 3 4

4 1 3 2

1 4 3 2

△ ⋇ ⊚ ⊡

⋇ △ ⊚ ⊡

It shouldn’t be hard to see that despite the different “output” order (2134 and 1432),
the same permutation is depicted in all three diagrams. This example demonstrates two things:

• First, the names of the items in our set do not have any meaning.
Ω is just a set of n arbitrary things, which we may label however we like.

• Second, permutations are verbs. We do not care about the “output” of a certain permutation,
we care about what it does. We could, for example, describe the permutation above as “swap
the first two of four elements.”

Why, then, do we order our elements when we talk about permutations? As noted before, this is for
convenience. If we assign a natural order to the elements of Ω (say, 1234), we can identify
permutations by simply listing their output: Clearly, [1234] represents the trivial permutation, [2134]
represents “swap first two,” and [4123] represents “cycle right.”

Problem 6:
Draw string diagrams for [4123] and [2341].
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Part 2: Cycle Notation

Definition 7: Order
The order of a permutation f is the smallest positive n so that fn(x) = x for all x.
If we repeatedly apply a permutation with order n, we will get back to where we started after n steps.
For example, consider [2134]. This permutation has order 2, as we clearly see below:

1 2 3 4

2 1 3 4

1 2 3 4

Swapping the first two elements of a list twice changes nothing.
Thus, [2134] has an order of two.

Problem 8:
What is the order of [2314]?
How about [4321]?
Note: You shouldn’t need to draw any strings to solve this problem.

Problem 9:
Show that all permutations (on a finite set) have a well-defined order.
In other words, show that there is always an integer n so that fn(x) = x.

Definition 10: Composition
The composition of two permutations f and g is the permutation h(x) = f(g(x)).
We’ll denote this as fg—that is, by simply writing the permutations we’re composing next to each
other.

Problem 11:
Show that function composition is associative.
That is, show that f(gh) = (fg)h.

Problem 12:
What is [1324][4321]?
How about [321][213][231]?
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As you may have noticed, the square-bracket notation we’ve been using thus far is a bit unwieldy.
Permutations are verbs—but we’ve been referring to them using a noun (namely, their output when
applied to an ordered sequence of numbers). Our notation fails to capture the meaning of the
underlying object.
Think about it: is the permutation [1234] different than the permutation [12345]?
Indeed, these permutations operate on different sets—but they are both the identity!
What should we do if we want to talk about the identity on {1, 2, ..., 10}?
We need something better.

Definition 13: Cycles
Any permutation is composed of a number of cycles.
For example, consider the permutation [2134], which consists of one two-cycle: 1 → 2 → 1
Note: 3 → 3 and 4 → 4 are also cycles, but we’ll ignore them. One-cycles aren’t aren’t interesting.

1 2 3 4

The permutation [431265] is a bit more interesting—it contains two cycles:
(1 → 3 → 2 → 4 → 1 and 5 → 6 → 5)

1 2 3 4 5 6

Another name we’ll often use for two-cycles is transposition.
Any permutation that swaps two adjacent elements is called a transposition.

Problem 14:
Find all cycles in [5342761].

Problem 15:
What permutation (on five objects) is formed by the cycles 3 → 5 → 3 and 1 → 2 → 4 → 1?
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Definition 16: Cycle Notation
We now have a solution to our problem of notation. Instead of referring to permutations using their
output, we will refer to them using their cycles.
For example, we’ll write [2134] as (12), which denotes the cycle 1 → 2 → 1:

1 2 3 4

As another example, [431265] is (1324)(56) in cycle notation.
Note that we write [431265] as a composition of two cycles:
applying the permutation [431265] is the same as applying (1324), then applying (56).

1 2 3 4 5 6

Any permutation σ may be written as a product (i.e, composition) of disjoint cycles σ1σ2...σk.
Make sure you believe this fact. If you don’t, ask an instructor.
Also, the identity f(x) = x is written as () in cycle notation.

Problem 17:
Convince yourself that disjoint cycles commute.
That is, that (1324)(56) = (56)(1324) = [431265] since (1324) and (56) do not overlap.

Problem 18:
Write the following in square-bracket notation.

• (12) on a set of 2 elements
• (12)(435) on a set of 5 elements
• (321) on a set of 3 elements
• (321) on a set of 6 elements
• (1234) on a set of 4 elements
• (3412) on a set of 4 elements

Note that (12) refers the “swap first two” permutation on a set of any size.
We can now use the same name for the same permutation on two different sets!

Problem 19:
Write the following in square-bracket notation. Be careful.

• (13)(243) on a set of 4 elements
• (243)(13) on a set of 4 elements

Problem 20:
Look at the last two permutations in ??, (1234) and (3412).
These are identical—they are the same cycle written in two different ways.
List all other ways to write this cycle. Hint: There are two more.
Also, note that the last two permutations in ?? are the same.
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Problem 21:
What is the inverse of (12)?
How about (123)? And (4231)?
Note that again, we don’t need to know how big our set is.
The inverse of (12) is the same in all sets.

Problem 22:
Say σ is a permutation composed of disjoint cycles σ1σ2...σk.
Say we know the order of all σi. What is the order of σ?

Problem 23:
Show that any cycle (123...n) is equal to the product (12)(23)...(n− 1, n).

Problem 24:
Write (7126453) as a product of transpositions.
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Problem 25:
Show that any permutation is a product of transpositions.

Problem 26:
Show that any permutation is a product of transpositions of the form (1, k).
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Problem 27:
Show that any transposition (a, b) is equal to the product (a, a+ 1)(a+ 1, b)(a, a+ 1).

Problem 28:
Show that any permutation is a product of adjacent transpositions.
(An adjacent transposition swaps two adjacent elements, and thus looks like (n, n+ 1))

8



Part 3: Groups (review)

Definition 29:
Before we continue, we must introduce a bit of notation:

• Sn is the set of permutations on n objects.
• Zn is the set of integers mod n.
• Z×

n is the set of integers mod n with multiplicative inverses.
In other words, it is the set of integers smaller than n and coprime to n.1
For example, Z×

12 = {1, 5, 7, 11}.

Problem 30:
What are the elements of S3? Hint: Use cycle notation
How about Z×

17?

Definition 31:
A group (G, ∗) consists of a set G and an operator ∗.
Groups always have the following properties:

A: G is closed under ∗. In other words, a, b ∈ G =⇒ a ∗ b ∈ G.
B: ∗ is associative: (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G
C: There is an identity e ∈ G, so that a ∗ e = a ∗ e = a for all a ∈ G.
D: For any a ∈ G, there exists a b ∈ G so that a ∗ b = b ∗ a = e. b is called the inverse of a.

This element is written as −a if our operator is addition and a−1 otherwise.
Any pair (G, ∗) that satisfies these properties is a group.

Problem 32:
Is (Z5,+) a group?
Is (Z5,−) a group?
Note: + and − refer to the usual operations in modular arithmetic.

Problem 33:
What is the group with the fewest elements?

1We proved this in another handout, but you may take it as fact here.
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Problem 34:
Show that function composition is associative

Problem 35:
Show that Sn is a group under composition.

Problem 36:
Let (G, ∗) be a group with finitely many elements, and let a ∈ G.
Show that ∃n ∈ Z+ so that an = e
Hint: an = a ∗ a ∗ ... ∗ a repeated n times.
The smallest such n defines the order of g.

Example Solution

We’ve already done a special case of this problem!
Find it in this handout, then rewrite your proof for an arbitrary (finite) group.

Problem 37:
What is the order of 5 in (Z25,+)?
What is the order of 2 in (Z×

17,×)?
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Definition 38:
Let G be a group, and let g be an element of G.
We say g is a generator if every other element of G may be written as a power of g.

Problem 39:
Say the size of a group G is n.
If g is a generator, what is its order?
Provide a proof.

Problem 40:
Find the two generators in (Z,+)
Then, find all generators of (Z5,+)

Problem 41:
How many groups have only one generator?

Definition 42:
Let S be a subset of the elements in G.
We say that S generates G if every element of G may be written as a product of elements in S.
Note that this is an extension of ??.

Problem 43:
We’ve already found a few generating sets of Sn. What are they?
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Part 4: Subgroups

Problem 44:
What elements do S2 and S3 share?

Consider the sets {1, 2} and {1, 2, 3}. Clearly, {1, 2} ⊂ {1, 2, 3}.
Can we say something similar about S2 and S3?
Looking at ??, we may want to say that S2 ⊂ S3 since every element of S2 is in S3.
This however, isn’t as interesting as it could be. Remember that S2 and S3 are groups, not sets:
their elements come with structure, which the “subset” relation does not capture.
To account for this, we’ll define a similar relation: subgroups.

Definition 45:
Let G and G′ be groups. We say G′ is a subgroup of G (and write G′ ⊂ G) if the following are true:
(Note that x, y are elements of G, and xy is multiplication in G)

• the set of elements in G′ is a subset of the set of elements in G.
• the identity of G is in G′

• x, y ∈ G′ =⇒ xy ∈ G′

• x ∈ G′ =⇒ x−1 ∈ G′

The above definition may look faily scary, but the idea behind a subgroup is simple.
Consider S3 and S4, the groups of permutations of 3 and 4 elements.
Say we have a set of four elements and only look at the first three.
S3 fully describes all the ways we can arrange those three elements:

1 2 3 4

2 3 1 4

S3

Problem 46:
Show that S3 is a subgroup of S4.
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Definition 47:
Let G and H be groups. We say that G and H are isomorphic (and write A ≃ B)
if there is a bijection f : G → H with the following properties:

• f(eG) = eH , where eG is the identity in G
• f(x−1) = f(x)−1 for all x in G
• f(xy) = f(x)f(y) for all x, y in G

Intuitively, you can think of isomorphism as a form of equivalence.
If two groups are isomorphic, they only differ by the names of their elements.
The function f above tells us how to map one set of labels to the other.

Problem 48:
Show that Z×

7 and Z×
9 are isomorphic. Hint: Build a bijection with the above properties.

Remember that a group is fully defined by its multiplication table.

Problem 49:
Show that Z×

10 and Z×
5 , and Z4 are isomorphic. Hint: Build a bijection with the above properties.

Remember that a group is fully defined by its multiplication table.

Problem 50:
Show that isomorphism is transitive.
That is, if A ≃ B and B ≃ C, then A ≃ C.
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Problem 51:
How many subgroups of S4 are isomorphic to S3?

Problem 52:
What are the orders of S3 and S4?
How is this related to ???

Problem 53:
S4 also has S2 and the trivial group as subgroups.
How many instances of each does S4 contain?

Problem 54:
(Z4,+) is also a subgroup of S4. Find it!
How many subgroups of Z4 are isomorphic to S4?.
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Part 5: Bonus problems

Problem 55:
Show that x ∈ Z+ has a multiplicative inverse mod n iff gcd(x, n) = 1

Problem 56:
Let σ = (σ1σ2...σk) be a k-cycle in Sn, and let τ be an arbitrary element of Sn.
Show that τστ−1 =

(
τ(σ1), τ(σ2), ..., τ (σk)

)
Hint: As usual, τ is a permutation. Thus, τ(x) is the value at position x after applying τ .

Problem 57:
Show that the set

{
(1, 2), (1, 2, ..., n)

}
generates Sn.
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