
betalupi.com/handouts

The Regex Warm-Up
Prepared by Mark on March 3, 2025

Last time, we discussed Deterministic Finite Automata. One interesting application of these mathematical
objects is found in computer science: Regular Expressions.
This is often abbreviated “regex,” which is pronounced like “gif.”
Regex is a language used to specify patterns in a string. You can think of it as a concise way to define a
DFA, using text instead of a huge graph.
Often enough, a clever regex pattern can do the work of a few hundred lines of code.
Like the DFAs we’ve studied, a regex pattern accepts or rejects a string. However, we don’t usually use
this terminology with regex, and instead say that a string matches or doesn’t match a pattern.

Regex strings consist of characters, quantifiers, sets, and groups.

Quantifiers
Quantifiers specify how many of a character to match.
There are four of these: +, *, ?, and { }.

+ means “match one or more of the preceding token”
* means “match zero or more of the preceding token”
For example, the pattern ca+t will match the following strings:

• cat
• caat
• caaaaaaaat

ca+t will not match the string ct.
The pattern ca*t will match all the strings above, including ct.

? means “match one or none of the preceding token”
The pattern linea?r will match only linear and liner.

Brackets {min, max} are the most flexible quantifier.
They specify exactly how many tokens to match:
ab{2}a will match only abba.
ab{1,3}a will match only aba, abba, and abbba.
ab{2,}a will match any ab...ba with at least two bs.

Problem 1:
Write the patterns a* and a+ using only { }.

Problem 2:
Draw a DFA equivalent to the regex pattern 01*0.

1

https://betalupi.com/handouts

Characters, Sets, and Groups
In the previous section, we saw how we can specify characters literally:
a+ means “one or more a characters”
There are, of course, other ways we can specify characters.

The first such way is the set, denoted []. A set can pretend to be any character inside it.
For example, m[aoy]th will match math, moth, or myth.
a[01]+b will match a0b, a111b, a1100110b, and any other similar string.

We can negate a set with a ^.
[^abc] will match any single character except a, b, or c, including symbols and spaces.

If we want to keep characters together, we can use the group, denoted ().
Groups work exactly as you’d expect, representing an atomic¹ group of characters.
a(01)+b will match a01b and a010101b, but will not match a0b, a1b, or a1100110b.

Problem 3:
You are now familiar with most of the tools regex has to offer.
Write patterns that match the following strings:

• An ISO-8601 date, like 2022-10-29.
Hint: Invalid dates like 2022-13-29 should also be matched.

• An email address.
Hint: Don’t forget about subdomains, like math.ucla.edu.

• A UCLA room number, like MS 5118 or Kinsey 1220B.
• Any ISBN-10 of the form 0-316-00395-7.

Hint: Remember that the check digit may be an X. Dashes are optional.
• A word of even length.

Hint: The set [A-z] contains every english letter, capitalized and lowercase.
[a-z] will only match lowercase letters.

• A word with exactly 3 vowels.
Hint: The special token \w will match any word character.
It is equivalent to [A-z0-9_]. _ represents a literal underscore.

• A word that has even length and exactly 3 vowels.
• A sentence that does not start with a capital letter.

Problem 4:
If you’d like to know more, check out https://regexr.com. It offers an interactive regex prompt, as well
as a cheatsheet that explains every other regex token there is.
You can find a nice set of challenges at https://alf.nu/RegexGolf.

¹In other words, “unbreakable”

2

