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Graph Theory and Instant Insanity
Prepared by Mark on February 10, 2025

Based on a handout by Oleg Gleizer

Part 1: Instant Insanity
The puzzle you have in front of you is called Instant Insanity.
It consists of four cubes, with faces colored with four colors: red, blue, green, and white. The
objective is to put the cubes in a row so that each side, front, back, upper, and lower, of the row
shows each of the four colors.

There are 41,472 different arrangements of the cubes. Only one is a solution. Finding it by trial and
error is quite difficult, but we have witnessed a few students do just that.
However, that rarely happens. We’d like to solve this puzzle today, and to do that, we’ll need a few
tools.

Part 2: Cubic Nets
A cubic net is a 2D picture simultaneously showing all the six sides (a.k.a. faces) of a 3D cube, please
take a look at the examples below.

Problem 1:
Draw a cubic net different from the two above.
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Problem 2:
An ant wants to crawl from point A of a cubic room to the opposite point B, as in the picture below.

A

B

The insect can crawl on any surface, a floor, ceiling, or wall, but cannot fly through the air. Find at
least two different shortest paths for the ant (there is more than one).
Let’s look at the nets of the puzzle’s cubes.

Cube 1

Red Red Red Blue

Grn

Wht

Cube 2

Red Red Grn Wht

Wht

Blue

Cube 3

Red Grn Blue Wht

Wht

Blue

Cube 4

Red Blue Grn Blue

Wht

Grn

Note that each cube is different.
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Part 3: Graphs

Last week’s lesson

A graph is a collection of nodes (vertices) and connections between them (edges). If an edge e
connects the vertices vi and vj , then we write e = vi, vj . An example is below.

BA C
e1

e2

e3

e4

More formally, a graph is defined by a set of vertices {v1, v2, ...}, and a set of edges
{ {v1, v2}, {v1, v3}, ... }.

If the order of the vertices in an edge does not matter, a graph is called undirected. A graph is
called a directed graph if the order of the vertices does matter. For example, the (undirected)
graph above has three vertices, A, B, and C, and four edges, e1 = {A,B}, e2 = {A,C},
e3 = {A,C}, and e4 = {B,C}.

Let’s represent Cube 1 by a graph.
The vertices will be the face colors: Blue, Green, Red, and White, so V = {B,G,R,W}.
Two vertices are be connected by an edge if and only if the corresponding faces are opposing each
other on the cube.
Cube 1 has the following edges: e1 = {B,R}, e2 = {G,W}, and the loop e3 = {R,R}. To emphasize
that all the three edges represent the first cube, let us mark them with the number 1.

1

1

1

Blue

Red Wht

Grn

Cube 2 has the following pairs of opposing faces, {B,W}, {G,R}, and {R,W}. Let us add them to
the graph as the edges e4, e5, and e6.
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1

1

12 2

2

Blue

Red Wht

Grn

Let us now make the graph representing all four cubes.

1

1

1
2

2

2

3

3

3

4

4

4

Blue

Red Wht

Grn

Problem 3:
Check if the above representation is correct for Cubes 3 and 4.
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With the help of the above graph, solving the puzzle becomes as easy as a walk in the park, literally.
Imagine that the vertices of the above graph are the clearings and the edges are the paths. An edge
marked by the number i represents two opposing faces of the i-th cube. Let us try to find a closed
walk, a.k.a. a cycle, in the graph that visits each clearing once and uses the paths marked by the
different numbers, i = 1, 2, 3, 4. If we order the front and rear sides of the cubes accordingly, then the
front and rear of the stack will show all the four different colors in the order prescribed by our walk.
For example, here is such an (oriented) cycle, represented by the magenta arrows on the picture
below.

1

1

1
2

2

2

3

3

3

4

4

4

Blue

Red Wht

Grn

The first leg of the walk tells us to take Cube 1 and to make sure that its blue side is facing forward.
Then the red side, opposite to the blue one, will face the rear.

Front:

Rear:

Blue

Red

The next leg of the walk tells us to take Cube 2 and to place it in such a way that its red side faces
us while the opposing green side faces the rear. Since we go in a cycle that visits all the colors
one-by-one, neither color repeats the ones already used on their sides of the stack.

Front:

Rear:

Blue Red

Red Grn

The third leg of the walk tells us to take Cube 4, not Cube 3, and to place it green side forward,
white side facing the rear.
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Front:

Rear:

Blue Red

Red Grn

Grn

Wht

Finally, the last leg of the walk tells us to take Cube 3 and to place it the white side facing forward,
the opposite blue side facing the rear.

Front:

Rear:

Blue Red

Red Grn

Wht

Blue

Grn

Wht

Now the front and rear of the stack are done. If we manage to find a second oriented cycle in the
original graph that has all the properties of the first cycle, but uses none of its edges, we would be
able to do the upper and lower sides of the stack and to complete the puzzle. Using the edges we
have already traversed during our first walk will mess up the front-rear configuration, but there are
still a plenty of the edges left!

Problem 4:
Complete the puzzle.
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Part 4: Traveling salesman problem

Problem 5:
A salesman with the home office in Albuquerque has to fly to Boston, Chicago, and Denver, visiting
each city once, and then to come back to the home office. The airfare prices, shown on the graph
below, do not depend on the direction of the travel. Find the cheapest way.
This was on last week’s handout, but not everyone had the chance to solve it.

A

B CD

$1400 $1000$400

$800

$1200 $900
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Part 5: Planar graphs
A graph is called planar, if it can be drawn in the plane in such a way that no edges cross one
another.

Problem 6:
Show that the following graph is planar.

A B

CD

Problem 7:
Is it possible to connect three houses, A, B, and C, to three utility sources, water (W), gas (G), and
electricity (E), without using the third dimension, either on the plane or sphere, so that the utility
lines do not intersect?

W G E

A B C
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A subdivision of a graph G is a graph resulting from the subdivision of the edges of G. The
subdivision of an edge e = (v1, v2) is a graph containing one new vertex v3, with the edges
e1 = (v1, v3) and e2 = (v3, v2) replacing the edge e.

v1 v3 v2

v1 v2
e

e1 e2

Problem 8:
What is the degree of a subdivision vertex?

A graph H is called a subgraph of a graph G if the sets of vertices and edges of H are subsets of the
sets of vertices and edges of G.
The following graphs are known as K3,3 and K5.

K3,3 K5

Let H be a graph that is a subdivision of either K3,3 or K5. If H is a subgraph of a graph G, then H
is called a Kuratowski subgraph, after a famous Polish mathematician Kazimierz Kuratowski
(1896-1980).
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Theorem 9:
A graph is planar if and only if it has no Kuratowski subgraph.

Problem 10:
Is the following graph planar? Why or why not?

Problem 11:
Is the following graph planar? Why or why not?
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Part 6: Euler characteristic
Let G be a planar graph, drawn with no edge intersections. The edges of G divide the plane into
regions, called faces. The regions enclosed by the graph are called the interior faces. The region
surrounding the graph is called the exterior (or infinite) face. The faces of G include both the
interior faces and the exterior one. For example, the following graph has two interior faces, F1,
bounded by the edges e1, e2, e4; and F2, bounded by the edges e1, e3, e4. Its exterior face, F3, is
bounded by the edges e2, e3.

BA C
e1

e2

e3

e4

The Euler characteristic of a graph is the number of the graph’s vertices minus the number of the
edges plus the number of the faces.

χ = V − E + F (1)

Problem 12:
Compute the Euler characteristic of the graph above.

Problem 13:
Compute the Euler characteristic of the following graph.

v1 v2
e
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Problem 14:
Is the following graph planar? If you think it is, please re-draw the graph so that it has no
intersecting edges. If you think the graph is not planar, please explain why.

Problem 15:
Compute the Euler characteristic of the graph from Problem ??.
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Let us consider the below picture of a regular dodecahedron as a graph, the vertices representing
those of the graph, and the edges, both solid and dashed, representing the edges of the graph.

Problem 16:
Is the graph planar? If you think it is planar, please re-draw the graph so that it has no intersecting
edges. If you think the graph is not planar, please explain why.

Problem 17:
Compute the Euler characteristic of the graph from Problem ??. Can you conjecture what the Euler
characteristic of every planar graph is equal to?
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A graph is called a tree if it is connected and has no cycles. Here is an example.

A

B C D

E F G

A path is called simple if it does not include any of its edges more than once.

Problem 18:
Prove that a graph in which any two vertices are connected by one and only one simple path is a tree.

Problem 19:
What is the Euler characteristic of a finite tree?

Theorem 20:
Let a finite connected planar graph have V vertices, E edges, and F faces. Then V − E + F = 2.

Problem 21:
Prove Theorem ??. Hint: removing an edge from a cycle does not change the number of vertices and
reduces the number of edges and faces by one.

Problem 22:
There are three ponds in a botanical garden, connected by ten non-intersecting brooks so that the
ducks can sweem from any pond to any other. How many islands are there in the garden?

Problem 23:
All the vertices of a finite graph have degree three. Prove that the graph has a cycle.

Problem 24:
Draw an infinite tree with every vertex of degree three.

Problem 25:
Prove that a connected finite graph is a tree if and only if V = E + 1.

Problem 26:
Give an example of a finite graph that is not a tree, but satisfies the relation V = E + 1.
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