
Advanced 2 https://betalupi.com/handouts

De Bruijn Sequences
Prepared by Mark on February 5, 2025

Based on a handout by Glenn Sun

Instructor’s Handout
This file contains solutions and notes.
Compile with the “nosolutions” flag before distributing.
Click [here] for the latest version of this handout.

Part 1: Introduction

Example 1:
A certain electronic lock has two buttons: 0 and 1. It opens as soon as the correct two-digit code is
entered, completely ignoring previous inputs. For example, if the correct code is 10, the lock will
open once the sequence 010 is entered.
Naturally, there are 22 = 4 possible combinations that open this lock.
If we don’t know the lock’s combination, we could try to guess it by trying all four combinations.
This would require eight key presses: 0001101100.

Problem 2:
There is, of course, a better way.
Unlock this lock with only 5 keypresses.

Solution

The sequence 00110 is guaranteed to unlock this lock.

Now, consider the same lock, now set with a three-digit binary code.

Problem 3:
How many codes are possible?

Problem 4:
Show that there is no solution with fewer than three keypresses

Problem 5:
What is the shortest sequence that is guaranteed to unlock the lock?
Hint: You’ll need 10 digits.

Solution

0001110100 will do.
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Part 2: Words

Definition 6:
An alphabet is a set of symbols.
For example, {0, 1} is an alphabet of two symbols, and {a, b, c} is an alphabet of three.

Definition 7:
A word over an alphabet A is a sequence of symbols in that alphabet.
For example, 00110 is a word over the alphabet {0, 1}.
We’ll let ∅ denote the empty word, which is a valid word over any alphabet.

Definition 8:
Let v and w be words over the same alphabet.
We say v is a subword of w if v is contained in w.
In other words, v is a subword of w if we can construct v
by removing a few characters from the start and end of w.
For example, 11 is a subword of 011, but 00 is not.

Definition 9:
Recall Example 1. Let’s generalize this to the n-subword problem:
Given an alphabet A and a positive integer n, we want a word over A that contains all possible
length-n subwords. The shortest word that solves a given n-subword problem is called the optimal
solution.

Problem 10:
List all subwords of 110.
Hint: There are six.

Solution

They are ∅, 0, 1, 10, 11, and 110.

Definition 11:
Let Sn(w) be the number of subwords of length n in a word w.

Problem 12:
Find the following:

• Sn(101001) for n ∈ {0, 1, ..., 6}
• Sn(abccac) for n ∈ {0, 1, ..., 6}

Solution

In order from S0 to S6:
• 1, 2, 3, 4, 3, 2, 1
• 1, 3, 5, 4, 3, 2, 1
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Problem 13:
Let w be a word over an alphabet of size k.
Prove the following:

• Sn(w) ≤ kn

• Sn(w) ≥ Sn−1(w)− 1
• Sn(w) ≤ k × Sn−1(w)

Solution
• There are k choices for each of n letters in the subword. So, there are kn possible words

of length n, and Sn(w) ≤ kn.
• For almost every distinct subword counted by Sn−1, concatenating the next letter creates

a distinct length n subword. The only exception is the last subword with length n− 1, so
Sn(w) ≥ Sn−1(w)− 1

• For each subword counted by Sn−1, there are k possibilities for the letter that follows in
w. Each element in the count Sn comes from one of k different length n words starting
with an element counted by Sn−1. Thus, Sn(w) ≤ k × Sn−1(w)
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Definition 14:
Let v and w be words over the same alphabet.
The word vw is the word formed by writing v after w.
For example, if v = 1001 and w = 10, vw is 100110.

Problem 15:
Let Fk denote the word over the alphabet {0, 1} obtained from the following relation:

F0 = 0; F1 = 1; Fk = Fk−1Fk−2

We’ll call this the Fibonacci word of order k.
• What are F3, F4, and F5?
• Compute S0 through S5 for F5.
• Show that the length of Fk is the (k + 2)th Fibonacci number.

Hint: Induction.

Solution
• F3 = 101
• F4 = 10110
• F5 = 10110101

• S0 = 1
• S1 = 2
• S2 = 3
• S3 = 4
• S4 = 5
• S5 = 4

As stated, use induction. The base case is trivial.
Let Nk represent the Fibonacci numbers, with N0 = 0, N1 = 1, and Nk = Nk−1 +Nk−2

Assume that Fk has length Nk+2 for all k ≤ n. We want to show that Fk+1 has length Nk+3.
Since Fk = Fk−1Fk−2, it has the length |Fk−1|+ |Fk−2|.
By our assumption, |Fk−1| = Nk+1 and |Fk−2| = Nk.
So, |Fk| = |Fk−1|+ |Fk−2| = Nk+1 +Nk = Nk+2.
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Problem 16:
Let Ck denote the word over the alphabet {0, 1} obtained by
concatenating the binary representations of the integers 0, ..., 2k − 1.
For example, C1 = 01, C2 = 011011, and C3 = 011011100101110111.

• Compute S0, S1, S2, and S3 for C3.
• Show that Sk(Ck) = 2k − 1.
• Show that Sn(Ck) = 2n for n < k.

Hint: If v is a subword of w and w is a subword of u, v must be a subword of u.
In other words, the “subword” relation is transitive.

Solution

S0 = 1, S1 = 2, S2 = 4, and S3 = 7.

First, we show that Sk(Ck) = 2k − 1.
Consider an arbitrary word w of length k. We’ll consider three cases:

• If w consists only of zeros, w does not appear in Ck.
• If w starts with a 1, w must appear in Ck by construction.
• If w does starts with a 0 and contains a 1, w has the form 0x1y

That is, x copies of 0 followed by a 1, followed by
an arbitrary sequence y with length (k − x− 1).
Now consider the word 1y0x1y0(x−1)1.
This is the concatenation of two consecutive binary numbers with k digits, and thus
appears in Ck. w is a subword of this word, and therefore also appears in Ck.

We can use the above result to conclude that Sn(Ck) = 2n for n < k:
If we take any word of length n < k and repeatedly append 1 to create a word of length k,
we end up with a subword of Ck by the reasoning above.
Thus, any word of length n is a subword of w, of which there are 2n.

Problem 17:
Convince yourself that Cn+1 provides a solution to the n-subword problem over {0, 1}.
Note: Cn+1 may or may not be an optimal solution—but it is a valid solution
Which part of Problem 16 shows that this is true?
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Part 3: De Bruijn Words
Before we continue, we’ll need to review some basic graph theory.

Definition 18:
A directed graph consists of nodes and directed edges.
An example is shown below. It consists of three vertices (labeled a, b, c),
and five edges (labeled 0, ..., 4).

0

1

2

3

4
a b c

Definition 19:
A path in a graph is a sequence of adjacent edges,
In a directed graph, edges a and b are adjacent if a ends at the node which b starts at.
For example, consider the graph above.
The edges 1 and 0 are adjacent, since you can take edge 0 after taking edge 1.
0 starts where 1 ends.
0 and 1, however, are not: 1 does not start at the edge at which 0 ends.

Definition 20:
An Eulerian path is a path that visits each edge of a graph exactly once.
An Eulerian cycle is an Eulerian path that starts and ends on the same node.

Problem 21:
Find the single unique Eulerian cycle in the graph below.

0

1

2

3
4a b c

Solution

24310 is one way to write this cycle.
There are other options, but they’re all the same.

Theorem 22:
A directed graph contains an Eulerian cycle iff...

• There is a path between every pair of nodes, and
• every node has as many “in” edges as it has “out” edges.

If the a graph contains an Eulerian cycle, it must contain an Eulerian path. (why?)
Some graphs contain an Eulerian path, but not a cycle. In this case, both conditions above must still
hold, but the following exceptions are allowed:

• There may be at most one node where (number in − number out) = 1
• There may be at most one node where (number in − number out) = −1

Note: Either both exceptions occur, or neither occurs. Bonus problem: why?
We won’t provide a proof of this theorem today. However, you should convince yourself that it is true:
if any of these conditions are violated, why do we know that an Eulerian cycle (or path) cannot exist?

6



Definition 23:
Now, consider the n-subword problem over {0, 1}.
We’ll call the optimal solution to this problem a De Bruijn1 word of order n.

Problem 24:
Let w be the an order-n De Bruijn word, and denote its length with |w|.
Show that the following bounds always hold:

• |w| ≤ n2n

• |w| ≥ 2n + n− 1

Solution
• There are 2n binary words with length n.

Concatenate these to get a word with length n2n.
• A word must have at least 2n + n− 1 letters to have 2n subwords with length n.

Remark 25:
Now, we’d like to show that the length of a De Bruijn word is always 2n + n− 1
That is, that the optimal solution to the subword problem always has 2n + n− 1 letters.
We’ll do this by construction: for a given n, we want to build a word with length 2n + n− 1 that
solves the binary n-subword problem.

Definition 26:
Consider a n-length word w.
The prefix of w is the word formed by the first n− 1 letters of w.
The suffix of w is the word formed by the last n− 1 letters of w.
For example, the prefix of the word 1101 is 110, and its suffix is 101. The prefix and suffix of any
one-letter word are both ∅.

Definition 27:
A De Bruijn graph of order n, denoted Gn, is constructed as follows:

• Nodes are created for each word of length n− 1.
• A directed edge is drawn from a to b if the suffix of a matches the prefix of b.

Note that a node may have an edge to itself.
• We label each edge with the last letter of b.

G2 and G3 are shown below.

G2

0 1
0

1
0 1

G3

0 1

1

01

0

1

0

00

01

10

11

1Dutch. Rhymes with “De Grown.”
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Problem 28:
Draw G4.

Solution

0

1

1

0

1

1

0

1

0

1

0

1

0

1

0

0

111

011 110 100

001 101010

000

Note for Instructors

This graph also appears as a solution to a different problem in the DFA handout.
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Problem 29:
• Show that Gn has 2n−1 nodes and 2n edges;
• that each node has two outgoing edges;
• and that there are as many edges labeled 0 as are labeled 1.

Solution

• There 2n−1 binary words of length n− 1.
• The suffix of a given word is the prefix of two other words,

so there are two edges leaving each node.
• One of those words will end with one, and the other will end with zero.
• Our 2n−1 nodes each have 2 outgoing edges—we thus have 2n edges in total.

Problem 30:
Show that G4 always contains an Eulerian path.
Hint: Theorem 22

Theorem 31:
We can now easily construct De Bruijn words for a given n:

• Construct Gn,
• find an Eulerian cycle in Gn,
• then, construct a De Bruijn word by writing the label of our starting vertex, then appending

the label of every edge we travel.

Problem 32:
Find De Bruijn words of orders 2, 3, and 4.

Solution
• One Eulerian cycle in G2 starts at node 0, and takes the edges labeled [1, 1, 0, 0].

We thus have the word 01100.
• In G3, we have an Eulerian cycle that visits nodes in the following order:

00 → 01 → 11 → 11 → 10 → 01 → 10 → 00 → 00
This gives us the word 0011101000

• Similarly, we G4 gives us the word 0001 0011 0101 1110 000.
Spaces have been added for convenience.
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Let’s quickly show that the process described in Theorem 31 indeed produces a valid De Bruijn word.

Problem 33:
How long will a word generated by the above process be?

Solution

A De Bruijn graph has 2n edges, each of which is traversed exactly once. The starting node
consists of n− 1 letters.
Thus, the resulting word contains 2n + n− 1 symbols.

Problem 34:
Show that a word generated by the process in Theorem 31 contains every possible length-n subword.
In other words, show that Sn(w) = 2n for a generated word w.

Solution

Any length-n subword of w is the concatenation of a vertex label and an edge label. By
construction, the next length-n subword is the concatenation of the next vertex and edge in
the Eulerian cycle.
This cycle traverses each edge exactly once, so each length-n subword is distinct.
Since w has length 2n + n− 1, there are 2n total subwords.
These are all different, so Sn ≥ 2n.
However, Sn ≤ 2n by Problem 13, so Sn = 2n.

Remark 35:
• We found that Theorem 31 generates a word with length 2n + n− 1 in Problem 33,
• and we showed that this word always solves the n-subword problem in Problem 34.
• From Problem 24, we know that any solution to the binary n-subword problem

must have at least 2n + n− 1 letters.
• Finally, Problem 30 guarantees that it is possible to generate such a word in any Gn.

Thus, we have shown that the process in Theorem 31 generates ideal solutions to the n-subword
problem, and that such solutions always exist. We can now conclude that for any n, the binary
n-subword problem may be solved with a word of length 2n + n− 1.
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Part 4: Line Graphs

Problem 36:
Given a graph G, we can construct a graph called the
line graph of G (denoted L(G) ) by doing the following:

• Creating a node in L(G) for each edge in G
• Drawing a directed edge between every pair of nodes a, b in L(G)

if the corresponding edges in G are adjacent.
That is, if edge b in G starts at the node at which a ends.

Problem 37:
Draw the line graph for the graph below.
Have an instructor check your solution.

0

1

2

3
4a b c

Solution

1

4

3

20

Definition 38:
We say a graph G is connected if there is a path between any two vertices of G.

Problem 39:
Show that if G is connected, L(G) is connected.

Solution

Let a, b and x, y be nodes in a connected graph G so that an edges a → b and and x → y exist.
Since G is connected, we can find a path from b to x. The path a to y corresponds to a path in
L(G) between a → b and x → y.
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Definition 40:
Consider L(Gn), where Gn is the nth order De Bruijn graph.
We’ll need to label the vertices of L(Gn). To do this, do the following:

• Let a and b be nodes in Gn

• Let x be the first letter of a
• Let y, the last letter of b
• Let p be the prefix/suffix that a and b share.

Note that a = xp and b = py,
Now, relabel the edge from a to b as xpy.
Use these new labels to name nodes in L(Gn).

Problem 41:
Construct L(G2) and L(G3). What do you notice?
Hint: What are L(G2) and L(G3)? We’ve seen them before!
You may need to re-label a few edges.

Solution

After fixing edge labels, we find that L(G2) ∼= G3 and L(G3) ∼= G4
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Part 5: Sturmian Words
A De Bruijn word is the shortest word that contains all subwords of a given length.
Let’s now solve a similar problem: given an alphabet, we want to construct a word that contains
exactly m distinct subwords of length n.
In general, this is a difficult problem. We’ll restrict ourselves to a special case:
We’d like to find a word that contains exactly m+ 1 distinct subwords of length m for all m < n.

Definition 42:
We say a word w is a Sturmian word of order n if Sm(w) = m+ 1 for all m ≤ n.
We say w is a minimal Sturmian word if there is no shorter Sturmian word of that order.

Problem 43:
Show that the length of a Sturmian word of order n is at least 2n.

Solution

In order to have n+ 1 subwords of length n, a word must have at least (n+ 1) + (n− 1) = 2n
letters.
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Problem 44:
Construct R3 by removing four edges from G3.
Show that each of the following is possible:

• R3 does not contain an Eulerian path.
• R3 contains an Eulerian path, and this path

constructs a word w with S3(w) = 4 and S2(w) = 4.
• R3 contains an Eulerian path, and this path

constructs a word w that is a minimal Sturmian word of order 3.

Solution

Remove the edges 00 → 01, 01 → 10, 10 → 00, and 11 → 11:

0 1

1

0

00

01

10

11

Remove the edges 00 → 00, 01 → 10, 10 → 01, and 11 → 11.
The Eulerian path starting at 00 produces 001100, where S2 = S3 = 4.

1

0

1

0

00

01

10

11

Remove the edges 01 → 11, 10 → 00, 11 → 10, and 11 → 11.
The Eulerian path starting at 00 produces 000101, where S0 = 1, S1 = 2, S2 = 3, and S3 = 4.
000101 has length 2× 3 = 6, and is thus minimal.

0

1

0100

01

10

11

Note that this graph contains an Eulerian path even though 11 is disconnected.
An Eulerian path needs to visit all edges, not all nodes!
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Problem 45:
Construct R2 by removing one edge from G2, then construct L(R2).

• If this line graph has four edges, set R3 = L(R2).
• If not, remove one edge from L(R2) so that an Eulerian path still exists and set R3 to the

resulting graph.
Label each edge in R3 with the last letter of its target node.
Let w be the word generated by an Eulerian path in this graph, as before.
Attempt the above construction a few times. Is w a minimal Sturmian word?

Solution

If R2 is constructed by removing the edge 0 → 1, L(R2) is the graph shown below.

0

0 0

100

01

10

11

We obtain the Sturmian word 111000 via the Eulerian path through the nodes
11 → 11 → 10 → 00 → 00.

If R2 is constructed by removing the edge 0 → 0, L(R2) is the graph pictured below.

01

0

1

100

01

10

11

This graph contains five edges, we need to remove one.
To keep an Eulerian path, we can remove any of the following:

• 10 → 01 to produce 011101
• 01 → 11 to produce 111010
• 11 → 10 to produce 010111
• 11 → 11 to produce 011010

Each of these is a minimal Sturmian word.

The case in which we remove 1 → 0 in G2 should produce a minimal Sturmian word where 0
and 1 are interchanged in the word produced by removing 0 → 1.
If we remove 1 → 1 will produce minimal Sturmian words where 0 and 1 are interchanged
from the words produced by removing 0 → 0.

15



Theorem 46:
We can construct a minimal Sturmian word of order n ≥ 3 as follows:

• Start with G2, create R2 by removing one edge.
• Construct L(G2), remove an edge if necessary.

The resulting graph must have an 4 edges and an Eulerian path. Call this R3.
• Repeat the previous step to construct a sequence of graphs Rn.
Rn−1 is used to create Rn, which has n+ 1 edges and an Eulerian path.
Label edges with the last letter of their target vertex.

• Construct a word w using the Eulerian path, as before.
This is a minimal Sturmian word.

For now, assume this theorem holds. We’ll prove it in the next few problems.

Problem 47:
Construct a minimal Sturmain word of order 4.

Solution

Let R3 be the graph below (see Problem 45).

0

0 0

100

01

10

11

R4 = L(R3) is then as shown below, producing the order 4 minimal Sturman word 11110000.
Disconnected nodes are omitted.

0

0

0

0

1000

100

110

111
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Problem 48:
Construct a minimal Sturmain word of order 5.

Solution

Use R4 from Problem 47 to construct R5, shown below.
Disconnected nodes are omitted.

1
0

0

0

0

0 0000 1000 1100 1110 1111

This graph generates the minimal Sturmian word 1111100000
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Problem 49:
Argue that the words we get by Theorem 46 are minimal Sturmain words.
That is, the word w has length 2n and Sm(w) = m+ 1 for all m ≤ n.

Solution

We proceed by induction.
First, show that we can produce a minimal order 3 Sturmian word:
R3 is guaranteed to have four edges with length-2 node labels, the length of w is 2× 3 = 6.
Trivially, we also have S0 = 1 and S1 = 2.
There are three vertices of R3 given by the three remaining nodes of R2. Each length-2
subword of w will be represented by the label of one of these three nodes. Thus, S2(w) ≤ 3.
The line graph of a connected graph is connected, so an Eulerian path on R3 reaches every
node. We thus have that S2(w) = 3.
By construction, the length 3 subwords of w are all distinct, so S3(w) = 4. We thus conclude
that w is a minimal order 3 Sturmain word.

Now, we prove our inductive step:
Assume that the process above produces an order n− 1 minimal Sturmain word wn−1.
We want to show that wn is also a minimal Sturmain word.
By construction, Rn has node labels of length n− 1 and n+ 1 edges.
Thus, wn has length 2n.
The only possilble length-m subwords of wn are those of wn−1 for m < n.
The line graph of a connected graph is connected, so an Eulerian path on R3 reaches each
node. Thus, all length-m subwords of wn−1 appear in wn.
By our inductive hypothesis, Sm(wn) = m+ 1 for m < n.
The length-n subwords of wn are distinct by construction, and there are n+ 1 such subwords.
Thus, Sn(wn) = n+ 1.
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