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Definable Sets

Prepared by Mark on March 3, 2025

Instructor’s Handout

This file contains solutions and notes.
Compile with the “nosolutions” flag before distributing.
Click [here] for the latest version of this handout.

Part 1: Logical Algebra

Definition 1:
Logical operators operate on the values {true, false},
just like algebraic operators operate on numbers.
In this handout, we’ll use the following operators:
« —: not
+ A and
« V:ior
« —: implies
+ (): parenthesis.
The function of these is defined by truth tables:

and or implies not,
A[B|AAB A BJ]AVB A[B|A—>B A -A
F|F F F|F F F|F T "T| F
F|T F F|T T F|T T F| T
T|F F T|F T T|F F
TI| T T T| T T TI| T T

A A B is true only if both A and B are true. AV B is true if A or B (or both) are true.
—A is the opposite of A, which is why it looks like a “negative” sign.

A — B is a bit harder to understand. Read aloud, this is “A implies B.”

The only time — produces false is when true — false. This fact may seem counterintuitive, but
will make more sense as we progress through this handout.

Hint: Think about it—if event « implies 3, it is impossible for a to occur without 5.

This is the only impossibility. All other variants are valid.

Problem 2:
Evaluate the following.
« T
«FVT
« TAT
« (TAF)VT
« (=(FV~=T)) = =T
. (F—)T) — (ﬁF\/ﬁT)
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Note for Instructors

We can also think of [x > 0] — b as follows: if « isn’t the kind of object we care about, we
evaluate true and check the next one. If x is the kind of object we care about and b is false, we
have a counterexample to [z > 0] — b, and thus T — F must be false.

Say we have the sentence Vz (a — b).

For example, take ¢ = Vz ([z > 0] — [Ty y° = z]).

o holds whenever any positive  has a square root.

If (F — x) returned false, statements like the above would be hard to write.

If « is negative, ¢ doesn’t care whether or not it has a root. In this case, F — % must be true
to avoid making whole V false.

Problem 3:
Evaluate the following.
« A—Tforany A
« (7(A— B)) » Aforany A, B
« (A— B) = (=B — —A) for any A, B

Note for Instructors

Note that the last formula is the contrapositive of A — B.

All are true.

Problem 4:

Show that —(A — —B) is equivalent to A A B.

That is, show that these expressions always evaluate to the same value given the same A and B.
Hint: Use a truth table

Problem 5:
Write an expression equivalent to AV B using only —, —, and ()?

((=4) = B)

Note that both A and V can be defined using the other logical symbols.
The only logical symbols we need are —, —, and ().
We include A and V to simplify our expressions.



Part 2: Structures

Definition 6:
A universe is a set of meaningless objects. Here are a few examples:

« {a,b,...,z}
° {0’1}
« Z, R, etc.

Definition 7:
A structure consists of a universe and a set of symbols.
A structure’s symbols give meaning to the objects in its universe.

Symbols come in three types:
« Constant symbols, which let us specify specific elements of our universe.
Examples: 0,1, %, T
« Function symbols, which let us navigate between elements of our universe.
Examples: +, X, sinz, /x
Note that symbols we usually call “operators” are functions under this definition.
The only difference between a + b and +(a, b) is notation.

+ Relation symbols, which let us compare elements of our universe.
Examples: <, >, <, >

The equality check = is not a relation symbol. It is included in every structure by default.
By definition, a = b is true if and only if @ and b are the same element of our universe.

Example 8:
The first structure we’ll look at is the following:

(Z | {0,1,+,—,<})

This is a structure over the universe Z that provides the following symbols:
« Constants: {0,1}
- Functions: {+,—}
+ Relations: {<}

If we look at our set of constant symbols, we see that the only integers we can directly refer to in this
structure are 0 and 1. If we want any others, we must define them using the tools this structure offers.

To “define” an element of a set, we need to write a sentence that is only true for that element.
If we want to define 2 in the structure above, we could use the following sentence:

“2 is the x that satisfies [1 +1 = z]”
This is a valid definition because 2 is the only element of Z for which [1 4+ 1 = z] evaluates to true.

Problem 9:
Define —1 in (Z ‘ {0,1,+, —, <})

The sentences “x where [z + 1 = 0]” and “x where [0 — 1 = z]” both work.



Let us formalize what we found in the previous two problems.

Definition 10: Formulas
A formula in a structure S is a well-formed string of constants, functions, relations,
and logical operators.

You already know what a “well-formed string” is: 1 + 1 is fine, v/+ is nonsense.
For the sake of time, I will not provide a formal definition — it isn’t particularly interesting.

As a quick example, the formula v := [=(1 = 1)] is always false,
and ¢(z) = [1 + 1 = z] evaluates to true only when z is 2.

Definition 11: Free Variables
A formula can contain one or more free variables. These are denoted ¢(a, b, ...).
Formulas with free variables let us define “properties” that certain objects have.

For example, consider the two formulas from the previous definition, ¢ and ¢:

s = (1 =1)
There are no free variables in this formula.
In any structure, v is always either true or false.

s o) =141 =z
This formula has one free variable, labeled .
The value of ¢(x) depends on the x we're talking about:
»(72) is false, and ¢(2) is true.
This “free variable” notation is very similar to the function notation we are used to:
The values of both ¢(z) = [z > 0] and f(x) = 2+ 1 depend on x.

Definition 12: Definable Elements
Let S be a structure over a universe U.
We say an element x € U is definable in S if we can write a formula ¢(x) that only z satisfies.

Problem 13:
Define 2 in the structure (Z+ | {4, x})

Hint: 27 = {1,2,3,...}. Also, 2 x 2 = 4.

2 is the only element in ZT that satisfies ¢(z) = [z X = 4].



Problem 14:
Try to define 2 in the structure (Z | {4, x})

Why can’t you do it?

We could try ¢(z) = [ x = 4], but this is satisfied by both 2 and —2.
We have no way to distinguish between negative and positive numbers.
This problem is intentionally hand-wavy. We don’t have the tools to write a proper proof.

Note for Instructors

Actually, it is. Bonus problem: how?
Do this after understanding quantifiers.

Problem 15:
Consider the structure (Ra” | {1,2,+})

« Define 22
« Define 2™ for all positive integers n
« Define 27" for all positive integers n
« What other numbers can we define in this structure?
Hint: There is at least one more “class” of numbers we can define.

As far as I've seen, we can define any 2“/* for a,b € Z.
For example, ¢(z) == [2 = z + (1 < z)] defines /2.



Part 3: Quantifiers

Recall the logical symbols we introduced earlier: (), A, V, -, —
We will now add two more: V (for all) and 3 (exists).

Definition 16:
V and 3 are quantifiers. They allow us to make statements about arbitrary symbols.
Quantifiers are aptly named: they tell us how many symbols satisfy a certain sentence.

Let’s look at V first. If ¢(z) is a formula,
the formula Vz ¢(z) is true only if ¢ is true for all  in our universe.

For example, take the formula Vz (0 < ).
In English, this means “For any z, x is bigger than zero,” or simply “Any x is positive.”

3 is very similar: the formula 3z p(z) is true if there is at least one x for which ¢(x) is true.
For example, 3 (0 < z) means “there is a positive number in our set.”

Problem 17:
Which of the following are true in Z7 Which are true in Rg‘?
R(T is the set of positive real numbers and zero.
« Va (x> 0)
« @z (2 =0)
- Vo [By (y x y = 2)]
« Vay Iz (x < 2 < y) This is a compact way to write Vo (Vy (3z (z < z < y)))
-+ ~dz (Vy (z <y))

« “all x are positive” RS‘
+ “zero doesn’t exist” neither
+ “square roots exist” Ry
- “this set is dense” RS

. “there is no minimum” 7Z



Problem 18:

Does the order of V and 3 in a formula matter?

What’s the difference between 3z Yy (x < y) and Vy Iz (z < y)?
Hint: Consider RT the set of positive reals. Zero is not positive.
Which of the above formulas is true in RT and which is false?

If Jz is inside Vy, « depends on y. We may pick a different value of x for every y.
If dz is outside, x is fixed before we check all y.

Problem 19:
Define 0 in (Z | {x})

pla)=[VWaexy=x]

Problem 20:
Define 1 in (Z | {x})

plz)=[Vyzxy=y]



Problem 21:
Define —1 in (Z } {0,<}>

pla)=[(<0)A-Ty (x<y<0)]

Problem 22:
Let ¢(x) be a formula.
Write a formula equivalent to Vz ¢(x) using only logical symbols and 3.

Vo p(z) is true if and only if =3z —p(x) is true.



Part 4: Definable Sets

Armed with (), A, V, -, —,V, and 3, we have the tools to define sets.

Definition 23: Set-Builder Notation
Say we have a sentence o(z).
The set of all elements that satisfy that sentence may be written as follows:

{z | o(2)}
This is read “The set of z where ¢ is true” or “The set of x that satisfy ¢.”

For example, take the formula p(z) = Jy (y + y = x).
The set of all even integers can then be written as

{z |3y y+ty=2)}

Definition 24: Definable Sets

Let S be a structure with a universe U.

We say a subset M of U is definable if we can write a formula
that is true for some x if and only if M contains z.

For example, consider the structure (Z | {+}).

Only even numbers satisfy the formula ¢(z) = [Ely (y+y= x)],

so we can define “the set of even numbers” as {z | Iy (y +y = 2)}.
Remember—we can only use symbols that are available in our structure!

Problem 25:
The empty set is definable in any structure. How?

Always: {x | =(z = z)}

Problem 26:
Define {0,1} in (Zé‘ i {<}) Hint: Define 0 and 1 as elements first, and remember that we can use

logical symbols.

wo(z) =[~Fyy<uz]

pr(z) =[(0<z) A "y (z<y<0) ]

Our final solution is {x | wo(z) V ¢1(x)}.

A finite set of definable elements is always definable.

An infinite set of definable elements might not be definable.

Problem 27:
Define the set of prime numbers in (Z ‘ {x,+, <})

Hint: A prime number is an integer that is positive and is only divisible by 1 and itself.

Y@) =[]y (O0<y<uaz)] “z is positive and isn’t 0 or 17
o(z) = [ (z < 0) A—3ab (Y(a) AY(b) Aa x b= z)]



Problem 28:
Define Ry in (R | {x})

Solution

o(x) = [Ty y x y = 2]

Problem 29:
Let A be a relational symbol. a A b is only true if a divides b.

Define the set of prime numbers in (Z+ | {A})

Solution

o) =[-Fabc (aLhz)AbLZ)A(cAz)A=(a=b)A=(a=c)A=(b=c)) ]

Theorem 30: Lagrange’s Four Square Theorem
Every natural number may be written as a sum of four integer squares.

Problem 31:
Define Zg in (Z | {x,+})

Solution

z) == [ Jabed (a® + % + 2+ d? = z) |, where a® :=a x a.
2

Problem 32;

Define < in (Z ’ {x,—l—})

Hint: We can’t formally define a relation yet. Don’t worry about that for now.

You can repharase this question as “given x,y € Z, write a formula ¢(z,y) that is only true if z < y”

Solution

Let ¢(x) be the formula from the previous problem.

e(z,y) =[~(z=y)A3d (Y(d)A(z+d=1y)) |
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Problem 33:
Consider the structure S = (R | {0,¢})
The relation a ¢ b holds if |a — b] =1

Part 1:
Define {—1,1} in S.

o(z) = [00x]

Part 2:
Define {—2,2} in S.

p(x)=[Va 0oz = aoz) A=(z=0) ]

Problem 34:
Let P be the set of all subsets of Zar . This is called the power set of ZS‘.
Let S be the structure (P | {C})

Part 1:

Show that the empty set is definable in S.

Hint: Defining {} with {z | -2 = x} is not what we need here.
We need @ € P, the “empty set” element in the power set of Zar.

p(z)=[Vyz Cy]
Note that we can use the same property to define 0 in (Z | {<})

Part 2:
Let z = y be a relation on P. z < y holds if x Ny # {}.
Show that = is definable in S.

Let ¢(x) be the formula from the previous problem.

o(z,y) = [ 3z (a Cx) A (a Cy) A(a) ]

Part 3:
Let f be the function on P defined by f(x) = Zs — x. This is called the complement of x.
Show that f is definable in S.

Hint: You can define a function by writing a formula ¢(z,y) that is only true when y = f(z).
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Part 5: Equivalence

Notation:

Let S be a structure and ¢ a formula.
If  is true in S, we write S' = ¢.
This is read “S satisfies ¢”

Definition 35:

Let S and T be structures.

We say S and T are equivalent (and write S = T) if for any formula ¢, S |E o <= T E .
If S and T are not equivalent, we write S £ T

Problem 36:
Show that (Z | {+,0}) + (R } {+,0})

Problem 37:
Show that (Z | {+,0}) 2 (N } {+,o})

Problem 38:
Show that (R | {+,0}) + <N | {+,0})

Problem 39:
Show that (]R | {+,0}) + (22 | {+,o})

Problem 40:
Show that (Z | {+,0}) £ (22 | {+,0})

All of the above are easy, but the last one can take a while.
The trick is to notice that Z has two equivalence classes mod 2, while Z? has four.
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